You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/gpt/experiments/pipeline_parallel/train_gpt_pp.py

178 lines
6.5 KiB

import argparse
import time
from functools import partial
import torch
from model_zoo import model_builder
from torch import nn
from colossalai.fx import ColoTracer
from colossalai.fx.passes.adding_split_node_pass import gpipe_dp_split_pass, split_with_split_nodes_pass
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.legacy.pipeline.middleware.adaptor import get_fx_topology
from colossalai.legacy.pipeline.rpc._pipeline_schedule import FillDrainPipelineEngine
from colossalai.legacy.pipeline.rpc.utils import rpc_run
from colossalai.logging import disable_existing_loggers, get_dist_logger
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument("--model_type", type=str, default="gpt2_medium")
parser.add_argument("--world_size", type=int, default=2)
parser.add_argument("--batch_size", type=int, default=16)
parser.add_argument("--dp_degree", type=int, default=1)
parser.add_argument("--tp_degree", type=int, default=1)
parser.add_argument("--num_microbatches", type=int, default=2)
parser.add_argument("--device", type=str, choices=["cpu", "cuda"], default="cuda")
parser.add_argument("--master_addr", type=str, default="localhost")
parser.add_argument("--master_port", type=str, default="29011")
parser.add_argument("--num_worker_threads", type=int, default=128)
return parser.parse_args()
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
# Randomly Generated Data
def get_data(batch_size, seq_len, vocab_size):
input_ids = torch.randint(0, vocab_size, (batch_size, seq_len), device=torch.cuda.current_device())
attention_mask = torch.ones_like(input_ids)
return input_ids, attention_mask
def get_tflops(model_numel, batch_size, seq_len, step_time):
return model_numel * batch_size * seq_len * 8 / 1e12 / (step_time + 1e-12)
# Create annotated model which is noted where to be splitted.
def get_annotated_model(model, data_kwargs, num_stages, num_microbatches):
tracer = ColoTracer()
meta_args = {k: v.to("meta") for k, v in data_kwargs.items()}
graph = tracer.trace(root=model, meta_args=meta_args)
gm = torch.fx.GraphModule(model, graph, model.__class__.__name__)
interp_meta_args = tuple([v.to("meta") for k, v in data_kwargs.items()])
interp = MetaInfoProp(gm)
interp.run(*interp_meta_args)
# annotated_model = avgnode_split_pass(gm, num_stages)
annotated_model = gpipe_dp_split_pass(gm, num_stages, num_microbatches, mode="block", block_limit=0.01)
return annotated_model
def create_partition_module(pp_rank: int, num_stages: int, model, data_kwargs, num_microbatches):
annotated_model = get_annotated_model(model, data_kwargs, num_stages, num_microbatches)
top_module, split_submodules = split_with_split_nodes_pass(annotated_model, merge_output=True)
topo = get_fx_topology(top_module)
for submodule in split_submodules:
if isinstance(submodule, torch.fx.GraphModule):
setattr(submodule, "_topo", topo)
return split_submodules[pp_rank + 1]
def partition(model, data_kwargs, num_microbatches, pp_rank: int, chunk: int, stage_num: int):
module = create_partition_module(pp_rank, stage_num, model, data_kwargs, num_microbatches)
return module
def run_master(args):
batch_size = args.batch_size
device = args.device
world_size = args.world_size
stage_num = world_size
num_microbatches = args.num_microbatches
model_type = args.model_type
# batch size per DP degree
SEQ_LEN = 1024
VOCAB_SIZE = 50257
NUM_STEPS = 10
WARMUP_STEPS = 1
disable_existing_loggers()
logger = get_dist_logger()
logger.info(
f"{args.model_type}, batch size {batch_size}, num stage {stage_num}, num microbatch {num_microbatches}",
ranks=[0],
)
torch.manual_seed(123)
# build criterion
criterion = GPTLMLoss()
# warm up pipeline fx partition
input_ids, attn_mask = get_data(batch_size, SEQ_LEN, VOCAB_SIZE)
warmup_data_kwargs = {"input_ids": input_ids, "attention_mask": attn_mask}
# create model
logger.info(f"start model_builder")
model = model_builder(model_type)(checkpoint=False)
logger.info(f"end model_builder")
# set 1f1b pipeline engine
pp_engine = FillDrainPipelineEngine(
partition_fn=partial(partition, model, warmup_data_kwargs, num_microbatches),
stage_num=stage_num,
num_microbatches=num_microbatches,
device=device,
chunk=1,
criterion=criterion,
metric=None,
checkpoint=False,
)
partition_numels = pp_engine.remote_numels()
for rank, numel in partition_numels.items():
logger.info(f"{rank=} numel in the partition:{numel}")
# build optim
pp_engine.initialize_optimizer(torch.optim.Adam, lr=1e-3)
ranks_tflops = {}
for n in range(NUM_STEPS):
# we just use randomly generated data here
input_ids, attn_mask = get_data(batch_size, SEQ_LEN, VOCAB_SIZE)
batch = {"input_ids": input_ids, "attention_mask": attn_mask}
start = time.time()
outputs = pp_engine.forward_backward(batch=batch, labels=input_ids, forward_only=False)
step_time = time.time() - start
for rank, numel in partition_numels.items():
if rank not in ranks_tflops:
ranks_tflops[rank] = []
step_tflops = get_tflops(numel, batch_size, SEQ_LEN, step_time)
logger.info(
f"Rank{rank} , [{n + 1}/{NUM_STEPS}] , Step time: {step_time:.3f}s, TFLOPS: {get_tflops(numel, batch_size, SEQ_LEN, step_time):.3f}",
ranks=[0],
)
if n >= WARMUP_STEPS:
ranks_tflops[rank].append(step_tflops)
median_index = ((NUM_STEPS - WARMUP_STEPS) >> 1) + WARMUP_STEPS
gpu_tflops = []
for rank, tflops_list in ranks_tflops.items():
tflops_list.sort()
gpu_tflops.append(tflops_list[median_index])
logger.info(f"GPU{rank} Median TFLOPS is {tflops_list[median_index]:.3f}")
logger.info(f"Total TFLOPS is {sum(gpu_tflops):.3f}")
logger.info(f"Avg TFLOPS per GPU is {sum(gpu_tflops) / world_size:.3f}")
if __name__ == "__main__":
args = parse_args()
rpc_run(args, run_master)