You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/components_to_test/hanging_param_model.py

50 lines
1.4 KiB

import torch
import torch.nn as nn
import torch.nn.functional as F
from colossalai.legacy.nn import CheckpointModule
from .registry import non_distributed_component_funcs
from .utils.dummy_data_generator import DummyDataGenerator
class HangingParamModule(CheckpointModule):
"""
Hanging Parameter: a parameter dose not belong to a leaf Module.
It has subordinate nn.modules and a nn.Parameter.
"""
def __init__(self, checkpoint=False) -> None:
super().__init__(checkpoint=checkpoint)
self.proj1 = nn.Linear(4, 8)
self.weight = nn.Parameter(torch.randn(8, 8))
self.proj2 = nn.Linear(8, 4)
def forward(self, x):
x = self.proj1(x)
x = F.linear(x, self.weight)
x = self.proj2(x)
return x
class DummyDataLoader(DummyDataGenerator):
def generate(self):
data = torch.rand(16, 4)
label = torch.randint(low=0, high=2, size=(16,))
return data, label
@non_distributed_component_funcs.register(name='hanging_param_model')
def get_training_components():
def model_builder(checkpoint=False):
return HangingParamModule(checkpoint)
trainloader = DummyDataLoader()
testloader = DummyDataLoader()
criterion = torch.nn.CrossEntropyLoss()
from colossalai.nn.optimizer import HybridAdam
return model_builder, trainloader, testloader, HybridAdam, criterion