ColossalAI/examples/tutorial/sequence_parallel/data/tokenizer/tokenizer.py

257 lines
8.2 KiB
Python

# coding=utf-8
# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Megatron tokenizers."""
from abc import ABC
from abc import abstractmethod
from colossalai.core import global_context as gpc
from colossalai.context import ParallelMode
from .bert_tokenization import FullTokenizer as FullBertTokenizer
def build_tokenizer(vocab_file, tokenizer_type, vocab_extra_ids=0):
"""Initialize tokenizer."""
if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0:
print('> building {} tokenizer ...'.format(tokenizer_type),
flush=True)
# Select and instantiate the tokenizer.
if tokenizer_type == 'BertWordPieceLowerCase':
tokenizer = _BertWordPieceTokenizer(vocab_file=vocab_file,
lower_case=True,
vocab_extra_ids=vocab_extra_ids)
elif tokenizer_type == 'BertWordPieceCase':
tokenizer = _BertWordPieceTokenizer(vocab_file=vocab_file,
lower_case=False,
vocab_extra_ids=vocab_extra_ids)
else:
raise NotImplementedError('{} tokenizer is not '
'implemented.'.format(tokenizer_type))
# Add vocab size.
padded_vocab_size = _vocab_size_with_padding(tokenizer.vocab_size)
return tokenizer, padded_vocab_size
def _vocab_size_with_padding(orig_vocab_size, make_vocab_size_divisible_by=128):
"""Pad vocab size so it is divisible by model parallel size and
still having GPU friendly size."""
after = orig_vocab_size
if gpc.is_initialized(ParallelMode.TENSOR):
multiple = make_vocab_size_divisible_by * gpc.get_world_size(ParallelMode.TENSOR)
else:
multiple = make_vocab_size_divisible_by
while (after % multiple) != 0:
after += 1
if not gpc.is_initialized(ParallelMode.GLOBAL) or gpc.get_global_rank() == 0:
print(' > padded vocab (size: {}) with {} dummy tokens '
'(new size: {})'.format(
orig_vocab_size, after - orig_vocab_size, after), flush=True)
return after
class AbstractTokenizer(ABC):
"""Abstract class for tokenizer."""
def __init__(self, name):
self.name = name
super().__init__()
@property
@abstractmethod
def vocab_size(self):
pass
@property
@abstractmethod
def vocab(self):
"""Dictionary from vocab text token to id token."""
pass
@property
@abstractmethod
def inv_vocab(self):
"""Dictionary from vocab id token to text token."""
pass
@abstractmethod
def tokenize(self, text):
pass
def detokenize(self, token_ids):
raise NotImplementedError('detokenizer is not implemented for {} '
'tokenizer'.format(self.name))
@property
def cls(self):
raise NotImplementedError('CLS is not provided for {} '
'tokenizer'.format(self.name))
@property
def sep(self):
raise NotImplementedError('SEP is not provided for {} '
'tokenizer'.format(self.name))
@property
def pad(self):
raise NotImplementedError('PAD is not provided for {} '
'tokenizer'.format(self.name))
@property
def eod(self):
raise NotImplementedError('EOD is not provided for {} '
'tokenizer'.format(self.name))
@property
def mask(self):
raise NotImplementedError('MASK is not provided for {} '
'tokenizer'.format(self.name))
class _BertWordPieceTokenizer(AbstractTokenizer):
"""Original BERT wordpiece tokenizer."""
def __init__(self, vocab_file, lower_case=True, vocab_extra_ids=0):
if lower_case:
name = 'BERT Lower Case'
else:
name = 'BERT Upper Case'
super().__init__(name)
self.tokenizer = FullBertTokenizer(vocab_file, do_lower_case=lower_case)
self.cls_id = self.tokenizer.vocab['[CLS]']
self.sep_id = self.tokenizer.vocab['[SEP]']
self.pad_id = self.tokenizer.vocab['[PAD]']
self.mask_id = self.tokenizer.vocab['[MASK]']
self._additional_special_tokens = []
# (dsachan) Add BOS and EOS tokens
SPECIAL_TOKENS = {'eos_token': '[EOS]',
'bos_token': '[BOS]'}
self._bos_token = '[BOS]'
self.add_token(self._bos_token)
self._bos_token_id = self.vocab.get(self._bos_token)
self._eos_token = '[EOS]'
self.add_token(self._eos_token)
self._eos_token_id = self.vocab.get(self._eos_token)
# (dsachan) Add additional special tokens
# These can be used as sentinel tokens in T5 model inputs
additional_special_tokens = []
additional_special_tokens.extend(
["<extra_id_{}>".format(i) for i in range(vocab_extra_ids)])
self.add_additional_special_tokens(additional_special_tokens)
def add_token(self, token):
if token not in self.vocab:
self.inv_vocab[self.vocab_size] = token
# self.vocab_size comes from len(vocab)
# and it will increase as we add elements
self.vocab[token] = self.vocab_size
def add_additional_special_tokens(self, tokens_list):
setattr(self, "additional_special_tokens", tokens_list)
for value in tokens_list:
self.add_token(value)
@property
def vocab_size(self):
return self.tokenizer.vocab_size()
@property
def vocab(self):
return self.tokenizer.vocab
@property
def inv_vocab(self):
return self.tokenizer.inv_vocab
def tokenize(self, text):
text_tokens = self.tokenizer.tokenize(text)
return self.tokenizer.convert_tokens_to_ids(text_tokens)
def decode(self, ids):
tokens = self.tokenizer.convert_ids_to_tokens(ids)
return self.tokenizer.convert_tokens_to_string(tokens)
def decode_token_ids(self, token_ids):
tokens = self.tokenizer.convert_ids_to_tokens(token_ids)
exclude_list = ['[PAD]', '[CLS]']
non_pads = [t for t in tokens if t not in exclude_list]
result = ""
for s in non_pads:
if s.startswith("##"):
result += s[2:]
else:
result += " " + s
return result
@property
def cls(self):
return self.cls_id
@property
def sep(self):
return self.sep_id
@property
def pad(self):
return self.pad_id
@property
def mask(self):
return self.mask_id
@property
def bos_token(self):
""" Beginning of sentence token id """
return self._bos_token
@property
def eos_token(self):
""" End of sentence token id """
return self._eos_token
@property
def additional_special_tokens(self):
""" All the additional special tokens you may want to use (list of strings)."""
return self._additional_special_tokens
@property
def bos_token_id(self):
""" Id of the beginning of sentence token in the vocabulary."""
return self._bos_token_id
@property
def eos_token_id(self):
""" Id of the end of sentence token in the vocabulary."""
return self._eos_token_id
@property
def additional_special_tokens_ids(self):
""" Ids of all the additional special tokens in the vocabulary (list of integers)."""
return [self.vocab.get(token) for token in self._additional_special_tokens]
@additional_special_tokens.setter
def additional_special_tokens(self, value):
self._additional_special_tokens = value