mirror of https://github.com/hpcaitech/ColossalAI
49 lines
1.2 KiB
Python
49 lines
1.2 KiB
Python
import torch
|
|
import torch.nn as nn
|
|
from colossalai.fx.proxy import ColoProxy
|
|
from colossalai.fx.tracer.tracer import ColoTracer
|
|
from torch.fx import GraphModule
|
|
import pytest
|
|
|
|
|
|
class Conv1D(nn.Module):
|
|
|
|
def __init__(self, nf, nx):
|
|
super().__init__()
|
|
self.nf = nf
|
|
w = torch.empty(nx, nf)
|
|
nn.init.normal_(w, std=0.02)
|
|
self.weight = nn.Parameter(w)
|
|
self.bias = nn.Parameter(torch.zeros(nf))
|
|
|
|
def forward(self, x):
|
|
size_out = x.shape[:-1] + (self.nf,)
|
|
x = torch.addmm(self.bias, x.view(-1, x.size(-1)), self.weight)
|
|
x = x.view(size_out)
|
|
return x
|
|
|
|
|
|
def test_coloproxy():
|
|
|
|
tracer = ColoTracer()
|
|
model = Conv1D(3, 3)
|
|
input_sample = {'x': torch.rand(3, 3).to('meta')}
|
|
|
|
graph = tracer.trace(root=model, meta_args=input_sample)
|
|
gm = GraphModule(model, graph, model.__class__.__name__)
|
|
gm.recompile()
|
|
node = list(gm.graph.nodes)[0]
|
|
|
|
proxy = ColoProxy(node=node, tracer=tracer)
|
|
proxy.meta_data = torch.empty(4, 2, device='meta')
|
|
|
|
assert len(proxy) == 4
|
|
assert proxy.shape[0] == 4 and proxy.shape[1] == 2
|
|
assert proxy.dim() == 2
|
|
assert proxy.dtype == torch.float32
|
|
assert proxy.size(0) == 4
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_coloproxy()
|