ColossalAI/colossalai/trainer/hooks/_log_hook.py

248 lines
9.2 KiB
Python

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
import os.path as osp
import torch
from tensorboardX import SummaryWriter
from colossalai.context import ParallelMode
from colossalai.core import global_context as gpc
from colossalai.registry import HOOKS
from colossalai.trainer._trainer import Trainer
from colossalai.utils import get_global_multitimer, set_global_multitimer_status, report_memory_usage, is_dp_rank_0, \
is_tp_rank_0, is_no_pp_or_last_stage
from ._metric_hook import MetricHook
def _format_number(val):
if isinstance(val, float):
return f'{val:.5f}'
elif torch.is_floating_point(val):
return f'{val.item():.5f}'
return val
class EpochIntervalHook(MetricHook):
def __init__(self, trainer: Trainer, interval: int = 1, priority: int = 1):
super().__init__(trainer, priority)
self._interval = interval
def _is_epoch_to_log(self):
return self.trainer.cur_epoch % self._interval == 0
@HOOKS.register_module
class LogMetricByEpochHook(EpochIntervalHook):
"""Specialized Hook to record the metric to log.
:param trainer: Trainer attached with current hook
:type trainer: Trainer
:param interval: Recording interval
:type interval: int, optional
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type priority: int, optional
"""
def __init__(self, trainer: Trainer, interval: int = 1, priority: int = 1) -> None:
super().__init__(trainer=trainer, interval=interval, priority=priority)
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0() and is_no_pp_or_last_stage()
def _get_str(self, mode):
msg = []
for metric_name, metric_calculator in self.trainer.states['metrics'][mode].items():
msg.append(
f'{metric_name} = {_format_number(metric_calculator.get_accumulated_value())}')
msg = ', '.join(msg)
return msg
def after_train_epoch(self):
if self._is_epoch_to_log():
msg = self._get_str(mode='train')
if self._is_rank_to_log:
self.logger.info(
f'Training - Epoch {self.trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
def after_test_epoch(self):
if self._is_epoch_to_log():
msg = self._get_str(mode='test')
if self._is_rank_to_log:
self.logger.info(
f'Testing - Epoch {self.trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
@HOOKS.register_module
class TensorboardHook(MetricHook):
"""Specialized Hook to record the metric to Tensorboard.
:param trainer: Trainer attached with current hook
:type trainer: Trainer
:param log_dir: Directory of log
:type log_dir: str, optional
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type priority: int, optional
"""
def __init__(self, trainer: Trainer, log_dir: str, priority: int = 1) -> None:
super().__init__(trainer=trainer, priority=priority)
self._is_rank_to_log = is_no_pp_or_last_stage()
if self._is_rank_to_log:
# create workspace on only one rank
if gpc.is_initialized(ParallelMode.GLOBAL):
rank = gpc.get_global_rank()
else:
rank = 0
log_dir = osp.join(log_dir, f'rank_{rank}')
# create workspace
if not osp.exists(log_dir):
os.makedirs(log_dir)
self.writer = SummaryWriter(
log_dir=log_dir, filename_suffix=f'_rank_{rank}')
def after_train_iter(self, *args):
for metric_name, metric_calculator in self.trainer.states['metrics']['train'].items():
if metric_calculator.epoch_only:
continue
val = metric_calculator.get_last_step_value()
if self._is_rank_to_log:
self.writer.add_scalar(
f'{metric_name}/train', val, self.trainer.cur_step)
def after_test_iter(self, *args):
for metric_name, metric_calculator in self.trainer.states['metrics']['test'].items():
if metric_calculator.epoch_only:
continue
val = metric_calculator.get_last_step_value()
if self._is_rank_to_log:
self.writer.add_scalar(f'{metric_name}/test', val,
self.trainer.cur_step)
def after_test_epoch(self):
for metric_name, metric_calculator in self.trainer.states['metrics']['test'].items():
if metric_calculator.epoch_only:
val = metric_calculator.get_accumulated_value()
if self._is_rank_to_log:
self.writer.add_scalar(f'{metric_name}/test', val,
self.trainer.cur_step)
def after_train_epoch(self):
for metric_name, metric_calculator in self.trainer.states['metrics']['train'].items():
if metric_calculator.epoch_only:
val = metric_calculator.get_accumulated_value()
if self._is_rank_to_log:
self.writer.add_scalar(f'{metric_name}/train', val,
self.trainer.cur_step)
@HOOKS.register_module
class LogTimingByEpochHook(EpochIntervalHook):
"""Specialized Hook to write timing record to log.
:param trainer: Trainer attached with current hook
:type trainer: Trainer
:param interval: Recording interval
:type interval: int, optional
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type priority: int, optional
:param log_eval: Whether writes in evaluation
:type log_eval: bool, optional
"""
def __init__(self,
trainer: Trainer,
interval: int = 1,
priority: int = 1,
log_eval: bool = True
) -> None:
super().__init__(trainer=trainer, interval=interval, priority=priority)
set_global_multitimer_status(True)
self._global_timer = get_global_multitimer()
self._log_eval = log_eval
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()
def _get_message(self):
msg = []
for timer_name, timer in self._global_timer:
last_elapsed_time = timer.get_elapsed_time()
if timer.has_history:
history_mean = timer.get_history_mean()
history_sum = timer.get_history_sum()
msg.append(
f'{timer_name}: last elapsed time = {last_elapsed_time}, '
f'history sum = {history_sum}, history mean = {history_mean}')
else:
msg.append(
f'{timer_name}: last elapsed time = {last_elapsed_time}')
msg = ', '.join(msg)
return msg
def after_train_epoch(self):
"""Writes log after finishing a training epoch.
"""
if self._is_epoch_to_log() and self._is_rank_to_log:
msg = self._get_message()
self.logger.info(
f'Training - Epoch {self.trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
def after_test_epoch(self):
"""Writes log after finishing a testing epoch.
"""
if self._is_epoch_to_log() and self._is_rank_to_log and self._log_eval:
msg = self._get_message()
self.logger.info(
f'Testing - Epoch {self.trainer.cur_epoch} - {self.__class__.__name__}: {msg}')
@HOOKS.register_module
class LogMemoryByEpochHook(EpochIntervalHook):
"""Specialized Hook to write memory usage record to log.
:param trainer: Trainer attached with current hook
:type trainer: Trainer
:param interval: Recording interval
:type interval: int, optional
:param priority: Priority in the printing, hooks with small priority will be printed in front
:type priority: int, optional
:param log_eval: Whether writes in evaluation
:type log_eval: bool, optional
"""
def __init__(self,
trainer: Trainer,
interval: int = 1,
priority: int = 1,
log_eval: bool = True
) -> None:
super().__init__(trainer=trainer, interval=interval, priority=priority)
set_global_multitimer_status(True)
self._global_timer = get_global_multitimer()
self._log_eval = log_eval
self._is_rank_to_log = is_dp_rank_0() and is_tp_rank_0()
def before_train(self):
"""Resets before training.
"""
if self._is_epoch_to_log() and self._is_rank_to_log:
report_memory_usage('before-train')
def after_train_epoch(self):
"""Writes log after finishing a training epoch.
"""
if self._is_epoch_to_log() and self._is_rank_to_log:
report_memory_usage(
f'After Train - Epoch {self.trainer.cur_epoch} - {self.__class__.__name__}')
def after_test(self):
"""Reports after testing.
"""
if self._is_epoch_to_log() and self._is_rank_to_log and self._log_eval:
report_memory_usage(
f'After Test - Epoch {self.trainer.cur_epoch} - {self.__class__.__name__}')