You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/optimizer/zero_redundancy_optimizer_l...

2344 lines
99 KiB

'''
Copyright 2019 The Microsoft DeepSpeed Team
'''
import math
import torch
import torch.distributed as dist
try:
from deepspeed.git_version_info import version
from deepspeed.moe.utils import is_moe_param
from deepspeed.ops.adam import DeepSpeedCPUAdam
from deepspeed.ops.op_builder import UtilsBuilder
from deepspeed.runtime.zero.config import ZERO_OPTIMIZATION_GRADIENTS
except ImportError:
print('DeepSpeed is required if you want to use ZeRO.')
from packaging import version as pkg_version
from torch._six import inf
from torch.distributed.distributed_c10d import _get_global_rank
from torch.optim import Optimizer
from colossalai.core import global_context as gpc
from colossalai.registry import OPTIMIZER_WRAPPERS
from colossalai.utils import report_memory_usage
from ._utils import is_model_parallel_parameter
from .loss_scaler import LossScaler, DynamicLossScaler
from ...context.parallel_mode import ParallelMode
# Toggle this to true to enable correctness test
# with gradient partitioning and without
pg_correctness_test = False
def input(msg):
return
def split_half_float_double(tensors):
dtypes = [
"torch.cuda.HalfTensor",
"torch.cuda.FloatTensor",
"torch.cuda.DoubleTensor"
]
buckets = []
for i, dtype in enumerate(dtypes):
bucket = [t for t in tensors if t.type() == dtype]
if bucket:
buckets.append(bucket)
return buckets
def isclose(a, b, rtol=1e-09, atol=0.0):
return abs(a - b) <= max(rtol * max(abs(a), abs(b)), atol)
def lcm(x, y):
from fractions import gcd # or can import gcd from `math` in Python 3
return x * y // gcd(x, y)
def get_alignment_padding(tensor_list, alignment):
num_elements = sum([tensor.numel() for tensor in tensor_list])
remainder = num_elements % alignment
return (alignment - remainder) if remainder else remainder
def move_to_cpu(tensor_list):
for tensor in tensor_list:
tensor.data = tensor.data.cpu()
def print_rank_msg(msg):
print(f"rank {dist.get_rank()} - {msg}")
@OPTIMIZER_WRAPPERS.register_module
class ZeroRedundancyOptimizer_Level_2(Optimizer):
"""
ZeroRedundancyOptimizer_Level_2 designed to reduce the memory footprint
required for training large deep learning models.
For more details please see ZeRO: Memory Optimization Towards Training A Trillion Parameter Models
https://arxiv.org/abs/1910.02054
"""
def __init__(self,
init_optimizer,
dp_parallel_mode=ParallelMode.DATA,
static_loss_scale=1.0,
dynamic_loss_scale=False,
dynamic_loss_args=None,
verbose=False,
contiguous_gradients=True,
reduce_bucket_size=500000000,
allgather_bucket_size=5000000000,
reduce_scatter=True,
overlap_comm=False,
cpu_offload=False,
clip_grad=0.0,
allreduce_always_fp32=False,
postscale_gradients=True,
gradient_predivide_factor=1.0,
gradient_accumulation_steps=1,
ignore_unused_parameters=True,
round_robin_gradients=False,
fp16_master_weights_and_gradients=False):
# mpu = None is removed from the parameter list
# tensor parallel will be automatically detected later
# LSG: default arguments for compatibility
has_moe_layers = False
partition_grads = True
expert_parallel_group = None
expert_data_parallel_group = None
self.timers = None
self.defaults = init_optimizer.defaults
dp_process_group = gpc.get_group(dp_parallel_mode)
if gpc.get_world_size(dp_parallel_mode) == 1:
partition_grads = False # for compatibility with dp size = 1
self.verbose = verbose
if dist.get_rank() == 0 and self.verbose:
print(f"Reduce bucket size {reduce_bucket_size}")
print(f"Allgather bucket size {allgather_bucket_size}")
print(f"CPU Offload: {cpu_offload}")
print(
f'Round robin gradient partitioning: {round_robin_gradients}')
# The fused optimizer does all the work. We need this layer for two reason:
# 1. maintain same user API from apex.fp16_utils
# 2. keep common stuff here in case we need to add ne552w fused optimizer later
# differences from apex.fp16_utils:
# - assume all model params in fp16
# - assume all params requires grad
# - flat by groups, not keeping state. TODO: remove state explicitly?
# - master gard and unflat master weight never exist. TODO: a way to save out unflat master?
if not torch.cuda.is_available:
raise SystemError("Cannot use fp16 without CUDA.")
self.optimizer = init_optimizer
# Load pre-built or JIT compile (un)flatten ops
util_ops = UtilsBuilder().load()
self.flatten = util_ops.flatten
self.unflatten = util_ops.unflatten
# ZeRO stage 1 (False) or 2 (True)
self.partition_gradients = partition_grads
self.reduce_scatter = reduce_scatter
self.overlap_comm = overlap_comm
self.cpu_offload = cpu_offload
self.deepspeed_adam_offload = cpu_offload
self.device = torch.cuda.current_device() if not self.cpu_offload else 'cpu'
self.dp_process_group = dp_process_group
# expert parallel group
self.ep_process_group = expert_parallel_group
# data parallel group for experts
self.expert_dp_process_group = expert_data_parallel_group
# data parallel size for non-experts
dp_size = dist.get_world_size(group=self.dp_process_group)
# For MoE models this maybe different for different param group
# It will be modified during MoE setup later in the init
self.real_dp_process_group = [
dp_process_group for i in range(len(self.optimizer.param_groups))
]
self.partition_count = [dp_size for i in range(
len(self.optimizer.param_groups))]
self.is_gradient_accumulation_boundary = True
# CPU-Offload requires contiguous gradients
self.contiguous_gradients = contiguous_gradients or cpu_offload
self.has_moe_layers = has_moe_layers
if self.has_moe_layers:
self._configure_moe_settings()
if not gpc.is_initialized(ParallelMode.TENSOR) or gpc.get_world_size(ParallelMode.TENSOR) == 1:
self.model_parallel_group = None
self.model_parallel_rank = 0
else:
self.model_parallel_group = gpc.get_group(ParallelMode.TENSOR)
self.model_parallel_rank = gpc.get_local_rank(ParallelMode.TENSOR)
self.overflow = False
self.clip_grad = clip_grad
self.allreduce_always_fp32 = allreduce_always_fp32
self.gradient_predivide_factor = gradient_predivide_factor
self.postscale_gradients = postscale_gradients
self.gradient_accumulation_steps = gradient_accumulation_steps
self.micro_step_id = 0
self.ignore_unused_parameters = ignore_unused_parameters
self.round_robin_gradients = round_robin_gradients
self.extra_large_param_to_reduce = None
self.fp16_master_weights_and_gradients = fp16_master_weights_and_gradients
if self.fp16_master_weights_and_gradients:
assert self.cpu_offload and type(self.optimizer) in [
DeepSpeedCPUAdam], f"fp16_master_and_gradients requires optimizer to support keeping fp16 master and gradients while keeping the optimizer states in fp32. Currenty only supported using ZeRO-Offload with DeepSpeedCPUAdam. But current setting is ZeRO-Offload:{self.cpu_offload} and optimizer type {type(self.optimizer)}. Either disable fp16_master_weights_and_gradients or enable ZeRO-2 Offload with DeepSpeedCPUAdam"
if self.reduce_scatter:
assert not self.allreduce_always_fp32, "allreduce_always_fp32 is not yet supported with ZeRO-2 with reduce scatter enabled"
assert self.gradient_predivide_factor == 1.0, "gradient_predivide_factor != 1.0 is not yet supported with ZeRO-2 with reduce scatter enabled"
assert self.postscale_gradients, "pre-scale gradients is not yet supported with ZeRO-2 with reduce scatter enabled"
# param flattened by groups
self.fp16_groups = []
self.fp16_groups_flat = []
# param partitioned by data parallel degree
# this will contain a list of equal sized tensors
# each of which will be updated by a different process
self.parallel_partitioned_fp16_groups = []
# a single 32-bit partition of the parallel partitioned parameters
# that this process will update
self.single_partition_of_fp32_groups = []
# param partition info
# These are the parameters in each group that will not be updated by this process directly
self.params_not_in_partition = []
# These are the parameters that will be updated by this process directly
self.params_in_partition = []
# Offset from the first paramter in the the self.params_in_partition
# the parameter boundaries may not align with partition boundaries
# so we need to keep track of the offset
self.first_offset = []
# number of elements per partition in each group
self.partition_size = []
# align nccl all-gather send buffers to 4-bye boundary
# 4-byte alignment/sizeof(fp16) = 2
self.nccl_start_alignment_factor = 2
assert (
allgather_bucket_size % self.nccl_start_alignment_factor == 0), f"allgather_bucket_size must be a multiple of nccl_start_alignment_factor, {self.nccl_start_alignment_factor} "
self.all_reduce_print = False
self.dtype = self.optimizer.param_groups[0]['params'][0].dtype
self.round_robin_fp16_groups = []
self.round_robin_fp6_indices = []
# padding on each partition for alignment purposes
self.groups_padding = []
# loop to deal with groups
for i, param_group in enumerate(self.optimizer.param_groups):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
# push this group to list before modify
# TODO: Explore simplification that avoids the extra book-keeping by pushing the reordered group
self.fp16_groups.append(param_group['params'])
# Record padding required to align group to world size
if partition_id == dist.get_world_size(
group=self.real_dp_process_group[i]) - 1:
padding = get_alignment_padding(self.fp16_groups[i],
self.partition_count[i])
else:
padding = 0
self.groups_padding.append(padding)
# not sure why apex was cloning the weights before flattening
# removing cloning here
if self.verbose:
report_memory_usage(f"Before moving param group {i} to CPU")
# move all the parameters to cpu to free up GPU space for creating flat buffer
move_to_cpu(self.fp16_groups[i])
if self.verbose:
report_memory_usage(f"After moving param group {i} to CPU")
# Reorder group parameters for load balancing of gradient partitioning during backward among ranks.
# This ensures that gradients are reduced in a fashion such that ownership round robins among the ranks.
# For example, rather than 3 gradients (g_n+2, g_n+1, g_n) that are reduced consecutively belonging
# to the same rank, instead they will belong to 3 ranks (r_m+2, r_m+1, r_m).
if self.round_robin_gradients:
round_robin_tensors, round_robin_indices = self._round_robin_reorder(
self.fp16_groups[i],
dist.get_world_size(group=self.real_dp_process_group[i])
)
else:
round_robin_tensors = self.fp16_groups[i]
round_robin_indices = list(range(len(self.fp16_groups[i])))
self.round_robin_fp16_groups.append(round_robin_tensors)
self.round_robin_fp6_indices.append(round_robin_indices)
# create flat buffer in CPU and move to GPU
self.fp16_groups_flat.append(
self.flatten_dense_tensors_aligned(
self.round_robin_fp16_groups[i],
self.nccl_start_alignment_factor *
dist.get_world_size(group=self.real_dp_process_group[i])).cuda(
torch.cuda.current_device()))
if self.verbose:
report_memory_usage(
f"After flattening and moving param group {i} to GPU")
if dist.get_rank(group=self.real_dp_process_group[i]) == 0:
report_memory_usage(
f"After Flattening and after emptying param group {i} cache")
# set model fp16 weight to slices of flattened buffer
self._update_model_fp16_weights(i)
# divide the flat weights into near equal partition equal to the data parallel degree
# each process will compute on a different part of the partition
data_parallel_partitions = self.get_data_parallel_partitions(
self.fp16_groups_flat[i],
i)
self.parallel_partitioned_fp16_groups.append(
data_parallel_partitions)
# verify that data partition start locations are 4-byte aligned
for partitioned_data in data_parallel_partitions:
assert (partitioned_data.data_ptr() %
(2 * self.nccl_start_alignment_factor) == 0)
# a partition of the fp32 master weights that will be updated by this process
if not fp16_master_weights_and_gradients:
self.single_partition_of_fp32_groups.append(
self.parallel_partitioned_fp16_groups[i][partition_id].to(
self.device).clone().float().detach())
else:
self.single_partition_of_fp32_groups.append(
self.parallel_partitioned_fp16_groups[i][partition_id].to(
self.device).clone().half().detach())
# modify optimizer of have flat master weight
self.single_partition_of_fp32_groups[
i].requires_grad = True # keep this in case internal optimizer uses it
param_group['params'] = [self.single_partition_of_fp32_groups[i]]
partition_size = len(self.fp16_groups_flat[i]) / dist.get_world_size(
group=self.real_dp_process_group[i])
params_in_partition, params_not_in_partition, first_offset = self.get_partition_info(
self.round_robin_fp16_groups[i],
partition_size,
partition_id)
self.partition_size.append(partition_size)
self.params_in_partition.append(params_in_partition)
self.params_not_in_partition.append(params_not_in_partition)
self.first_offset.append(first_offset)
for rank in range(dist.get_world_size()):
if dist.get_rank() == rank and self.verbose:
print(
f"Rank: {rank} partition count {self.partition_count} and sizes{[(p.numel(), self.is_moe_param_group[i] if hasattr(self, 'is_moe_param_group') else False) for i, p in enumerate(self.single_partition_of_fp32_groups)]} "
)
dist.barrier()
# exit(0)
self.reduce_bucket_size = int(reduce_bucket_size)
self.allgather_bucket_size = int(allgather_bucket_size)
self.reduction_event = torch.cuda.Event(
enable_timing=False, blocking=False)
self.reduction_stream = torch.cuda.Stream()
self.cpu_computation_stream = torch.cuda.Stream()
self.copy_grad_stream = torch.cuda.Stream()
self.callback_queued = False
self.param_dict = {}
# map between param_id and bool to specify if a param is in this partition
self.is_param_in_current_partition = {}
self.grads_in_ipg_bucket = []
self.params_in_ipg_bucket = []
self.elements_in_ipg_bucket = 0
self.params_already_reduced = []
self._release_ipg_buffers()
self.previous_reduced_grads = None
self.ipg_bucket_has_moe_params = False
# simplified param id
self.param_id = {}
largest_param_numel = 0
count = 0
for i, params_group in enumerate(self.fp16_groups):
for param in params_group:
unique_id = id(param)
self.param_id[unique_id] = count
self.param_dict[count] = param
self.params_already_reduced.append(False)
if param.numel() > largest_param_numel:
largest_param_numel = param.numel()
count = count + 1
for param_group in self.params_in_partition:
for param in param_group:
self.is_param_in_current_partition[self.get_param_id(
param)] = True
for param_group in self.params_not_in_partition:
for param in param_group:
self.is_param_in_current_partition[self.get_param_id(
param)] = False
if self.cpu_offload:
self.accumulated_grads_in_cpu = {}
self.norm_for_param_grads = {}
self.local_overflow = False
self.grad_position = {}
self.temp_grad_buffer_for_cpu_offload = torch.zeros(
largest_param_numel,
device=self.device,
dtype=self.dtype).pin_memory()
self.temp_grad_buffer_for_gpu_offload = torch.zeros(
largest_param_numel,
device=torch.cuda.current_device(),
dtype=self.dtype)
for i, params_group in enumerate(self.fp16_groups):
self.get_grad_position(i,
self.params_in_partition[i],
self.first_offset[i],
self.partition_size[i])
# mapping from parameter to partition that it belongs to
self.param_to_partition_ids = {}
# stores if a partition has been reduced in this step
self.is_partition_reduced = {}
# number of grads in partition that still need to be computed
self.remaining_grads_in_partition = {}
# total number of grads in partition
self.total_grads_in_partition = {}
# stores if a grad in a partition has been computed or not
self.is_grad_computed = {}
# stores the offset at which a parameter gradient needs to be inserted in a partition
self.grad_partition_insertion_offset = {}
# the offset in the gradient at which it must be inserted at the beginning of the partition
self.grad_start_offset = {}
# will store the averaged gradients required by this partition
self.averaged_gradients = {}
# store index of first parameter in each partition
self.first_param_index_in_partition = {}
# initializes all data structures for implementing gradient partitioning
self.initialize_gradient_partitioning_data_structures()
# resets the data structure value for the next backward propagation
self.reset_partition_gradient_structures()
# creates backward hooks for gradient partitioning
if self.partition_gradients or self.overlap_comm:
self.create_reduce_and_remove_grad_hooks()
# we may have a way of fusing dynamic scale. Do not support for now
if self.dtype == torch.float or not dynamic_loss_scale:
loss_scale_value = 1.0 if self.dtype == torch.float else static_loss_scale
self.dynamic_loss_scale = False
self.loss_scaler = LossScaler(scale=loss_scale_value)
cur_iter = 0
else:
if dynamic_loss_args is None:
self.loss_scaler = DynamicLossScaler()
else:
self.loss_scaler = DynamicLossScaler(**dynamic_loss_args)
self.dynamic_loss_scale = True
if self.verbose:
report_memory_usage("Before initializing optimizer states")
self.initialize_optimizer_states()
if self.verbose:
report_memory_usage("After initializing optimizer states")
if dist.get_rank() == 0:
print(f"optimizer state initialized")
if dist.get_rank(group=self.dp_process_group) == 0:
report_memory_usage(f"After initializing ZeRO optimizer")
def _configure_moe_settings(self):
assert self.contiguous_gradients, "Contiguous Gradients in ZeRO Stage 2 must be set to True for MoE. Other code paths are not tested with MoE"
assert self.reduce_scatter, "Reduce Scatter in ZeRO Stage 2 must be set to True for MoE. Other code paths are not tested with MoE"
def is_moe_group(group):
return 'moe' in group and group['moe']
assert any([is_moe_group(group) for group in
self.optimizer.param_groups]), "The model has moe layers, but None of the param groups are marked as MoE. Create a param group with 'moe' key set to True before creating optimizer"
self.is_moe_param_group = []
for i, group in enumerate(self.optimizer.param_groups):
if is_moe_group(group):
assert all(
[is_moe_param(param) for param in group['params']]), "All params in MoE group must be MoE params"
self.real_dp_process_group[i] = self.expert_dp_process_group
self.partition_count[i] = dist.get_world_size(
group=self.expert_dp_process_group)
self.is_moe_param_group.append(True)
else:
self.is_moe_param_group.append(False)
assert self.expert_dp_process_group is not None, "Expert data parallel group should be configured with MoE"
assert self.ep_process_group is not None, "Expert parallel group should be configured with MoE"
def _update_model_fp16_weights(self, group_index):
updated_params = self.unflatten(self.fp16_groups_flat[group_index],
self.round_robin_fp16_groups[group_index])
for p, q in zip(self.round_robin_fp16_groups[group_index], updated_params):
p.data = q.data
# set model fp16 weight to slices of reordered flattened buffer
for param_index, param in enumerate(self.fp16_groups[group_index]):
new_index = self.round_robin_fp6_indices[group_index][param_index]
param.data = self.round_robin_fp16_groups[group_index][new_index].data
def _round_robin_reorder(self, tensor_list, num_partitions):
# disable round robin if need to debug something
# return tensor_list, list(range(len(tensor_list)))
partition_tensors = {}
for i, tensor in enumerate(tensor_list):
j = i % num_partitions
if not j in partition_tensors:
partition_tensors[j] = []
partition_tensors[j].append((i, tensor))
reordered_tensors = []
reordered_indices = {}
for partition_index in partition_tensors.keys():
for i, (original_index, tensor) in enumerate(partition_tensors[partition_index]):
reordered_indices[original_index] = len(reordered_tensors)
reordered_tensors.append(tensor)
return reordered_tensors, reordered_indices
def _release_ipg_buffers(self):
if self.contiguous_gradients:
self.ipg_buffer = None
self.grads_in_partition = None
self.grads_in_partition_offset = 0
def initialize_optimizer_states(self):
for i, group in enumerate(self.fp16_groups):
single_grad_partition = torch.zeros(
int(self.partition_size[i]),
dtype=self.single_partition_of_fp32_groups[i].dtype,
device=self.device)
self.single_partition_of_fp32_groups[
i].grad = single_grad_partition.pin_memory(
) if self.cpu_offload else single_grad_partition
self.optimizer.step()
if not self.cpu_offload:
for group in self.single_partition_of_fp32_groups:
group.grad = None # class init
return
#########################################################################
#################### ZeRO Stage 1 - reduce gradients ####################
#########################################################################
def reduce_gradients(self, pipeline_parallel=False):
world_size = dist.get_world_size(self.dp_process_group)
my_rank = dist.get_rank(self.dp_process_group)
# with PP we must create ipg buffer, since backward is handled outside zero
if pipeline_parallel and self.contiguous_gradients:
self.ipg_buffer = []
buf_0 = torch.empty(int(self.reduce_bucket_size),
dtype=self.dtype,
device=torch.cuda.current_device())
self.ipg_buffer.append(buf_0)
self.ipg_index = 0
if not self.overlap_comm:
for i, group in enumerate(self.fp16_groups):
for param in group:
if param.grad is not None:
self.reduce_ready_partitions_and_remove_grads(param, i)
# reduce any pending grads in either hook/non-hook case
self.overlapping_partition_gradients_reduce_epilogue()
#########################################################################
#########################ZeRO Partition Gradients########################
#########################################################################
def get_first_param_index(self, group_id, param_group, partition_id):
for index, param in enumerate(param_group):
param_id = self.get_param_id(param)
if partition_id in self.param_to_partition_ids[group_id][param_id]:
return index
return None
def initialize_gradient_partitioning_data_structures(self):
for i, param_group in enumerate(self.round_robin_fp16_groups):
total_partitions = dist.get_world_size(
group=self.real_dp_process_group[i])
self.param_to_partition_ids[i] = {}
self.is_partition_reduced[i] = {}
self.total_grads_in_partition[i] = {}
self.remaining_grads_in_partition[i] = {}
self.is_grad_computed[i] = {}
self.grad_partition_insertion_offset[i] = {}
self.grad_start_offset[i] = {}
self.first_param_index_in_partition[i] = {}
for partition_id in range(total_partitions):
self.is_grad_computed[i][partition_id] = {}
self.grad_partition_insertion_offset[i][partition_id] = {}
self.grad_start_offset[i][partition_id] = {}
self.total_grads_in_partition[i][partition_id] = 0
self.initialize_gradient_partition(
i, param_group, partition_id)
self.is_partition_reduced[i][partition_id] = False
self.first_param_index_in_partition[i][
partition_id] = self.get_first_param_index(
i,
param_group,
partition_id)
def independent_gradient_partition_epilogue(self):
if self.verbose:
self.report_ipg_memory_usage(
f"In ipg_epilogue before reduce_ipg_grads", 0)
self.reduce_ipg_grads()
if self.verbose:
self.report_ipg_memory_usage(
f"In ipg_epilogue after reduce_ipg_grads", 0)
# if dist.get_rank() == 0:
# print()("Params already reduced %s", self.params_already_reduced)
for i in range(len(self.params_already_reduced)):
self.params_already_reduced[i] = False
if self.overlap_comm:
torch.cuda.synchronize()
# It is safe to clear previously reduced grads of other partitions
self._clear_previous_reduced_grads()
if self.cpu_offload is False:
for i, _ in enumerate(self.fp16_groups):
if not i in self.averaged_gradients or self.averaged_gradients[i] is None:
self.averaged_gradients[i] = self.get_flat_partition(
self.params_in_partition[i],
self.first_offset[i],
self.partition_size[i],
dtype=self.dtype,
device=torch.cuda.current_device(),
return_tensor_list=True)
else:
avg_new = self.get_flat_partition(self.params_in_partition[i],
self.first_offset[i],
self.partition_size[i],
dtype=self.dtype,
device=torch.cuda.current_device(),
return_tensor_list=True)
for accumulated_grad, new_avg_grad in zip(self.averaged_gradients[i], avg_new):
accumulated_grad.add_(new_avg_grad)
self._release_ipg_buffers()
# No need to keep the gradients anymore.
# All gradients required by the step
# are in self.averaged_gradients
self.zero_grad()
if self.verbose:
report_memory_usage(f"End ipg_epilogue")
# resets all partition to no reduced
# sets remaining grads to the total number of grads in each partition
# set is grad computed to false for all grads in partition
def reset_partition_gradient_structures(self):
for i, _ in enumerate(self.fp16_groups):
total_partitions = dist.get_world_size(
group=self.real_dp_process_group[i])
for partition_id in range(total_partitions):
self.is_partition_reduced[i][partition_id] = False
self.remaining_grads_in_partition[i][
partition_id] = self.total_grads_in_partition[i][partition_id]
for param_id in self.is_grad_computed[i][partition_id]:
self.is_grad_computed[i][partition_id][param_id] = False
def initialize_gradient_partition(self, i, param_group, partition_id):
def set_key_value_list(dictionary, key, value):
if key in dictionary:
dictionary[key].append(value)
else:
dictionary[key] = [value]
def increment_value(dictionary, key):
if key in dictionary:
dictionary[key] += 1
else:
dictionary[key] = 1
partition_size = self.partition_size[i]
start_index = partition_size * partition_id
end_index = partition_size * (partition_id + 1)
current_index = 0
first_offset = 0
for param in param_group:
param_size = param.numel()
param_id = self.get_param_id(param)
if (current_index >= start_index and current_index < end_index):
set_key_value_list(self.param_to_partition_ids[i],
param_id,
partition_id)
increment_value(self.total_grads_in_partition[i], partition_id)
self.is_grad_computed[i][partition_id][param_id] = False
self.grad_partition_insertion_offset[i][partition_id][
param_id] = current_index - start_index
self.grad_start_offset[i][partition_id][param_id] = 0
elif start_index > current_index and start_index < (current_index +
param_size):
assert (
first_offset == 0), "This can happen either zero or only once as this must be the first tensor in the partition"
first_offset = start_index - current_index
set_key_value_list(self.param_to_partition_ids[i],
param_id,
partition_id)
increment_value(self.total_grads_in_partition[i], partition_id)
self.is_grad_computed[i][partition_id][param_id] = False
self.grad_partition_insertion_offset[i][partition_id][param_id] = 0
self.grad_start_offset[i][partition_id][param_id] = first_offset
current_index = current_index + param_size
def overlapping_partition_gradients_reduce_epilogue(self):
self.independent_gradient_partition_epilogue()
def create_reduce_and_remove_grad_hooks(self):
self.grad_accs = []
for i, param_group in enumerate(self.fp16_groups):
for param in param_group:
if param.requires_grad:
def wrapper(param, i):
param_tmp = param.expand_as(param)
grad_acc = param_tmp.grad_fn.next_functions[0][0]
def reduce_partition_and_remove_grads(*notneeded):
self.reduce_ready_partitions_and_remove_grads(
param, i)
grad_acc.register_hook(
reduce_partition_and_remove_grads)
self.grad_accs.append(grad_acc)
wrapper(param, i)
def get_param_id(self, param):
unique_id = id(param)
return self.param_id[unique_id]
def report_ipg_memory_usage(self, tag, param_elems):
elem_count = self.elements_in_ipg_bucket + param_elems
percent_of_bucket_size = (
100.0 * elem_count) // self.reduce_bucket_size
if self.verbose:
report_memory_usage(
f"{tag}: elems in_bucket {self.elements_in_ipg_bucket} param {param_elems} max_percent {percent_of_bucket_size}"
)
# create a flat tensor aligned at the alignment boundary
def flatten_dense_tensors_aligned(self, tensor_list, alignment):
num_elements = 0
for tensor in tensor_list:
num_elements = num_elements + tensor.numel()
remaining = num_elements % alignment
if remaining:
elements_to_add = alignment - remaining
pad_tensor = torch.zeros(elements_to_add,
device=tensor_list[0].device,
dtype=tensor_list[0].dtype)
padded_tensor_list = tensor_list + [pad_tensor]
num_elements = num_elements + elements_to_add
else:
padded_tensor_list = tensor_list
return self.flatten(padded_tensor_list)
############### Independent Partition Gradient ########################
def reduce_independent_p_g_buckets_and_remove_grads(self, param, i):
if self.elements_in_ipg_bucket + param.numel() > self.reduce_bucket_size:
self.report_ipg_memory_usage("In ipg_remove_grads before reduce_ipg_grads",
param.numel())
self.reduce_ipg_grads()
if self.contiguous_gradients and self.overlap_comm:
# Swap ipg_index between 0 and 1
self.ipg_index = 1 - self.ipg_index
self.report_ipg_memory_usage("In ipg_remove_grads after reduce_ipg_grads",
param.numel())
param_id = self.get_param_id(param)
assert self.params_already_reduced[param_id] == False, \
f"The parameter {param_id} has already been reduced. \
Gradient computed twice for this partition. \
Multiple gradient reduction is currently not supported"
if param.numel() > self.reduce_bucket_size:
self.extra_large_param_to_reduce = param
elif self.contiguous_gradients:
# keeping the gradients contiguous to prevent memory fragmentation, and avoid flattening
new_grad_tensor = self.ipg_buffer[self.ipg_index].narrow(
0,
self.elements_in_ipg_bucket,
param.numel())
new_grad_tensor.copy_(param.grad.view(-1))
param.grad.data = new_grad_tensor.data.view_as(param.grad)
self.elements_in_ipg_bucket += param.numel()
assert param.grad is not None, f"rank {dist.get_rank()} - Invalid to reduce Param {param_id} with None gradient"
self.grads_in_ipg_bucket.append(param.grad)
self.params_in_ipg_bucket.append((i, param, param_id))
# make sure the average tensor function knows how to average the gradients
if is_moe_param(param):
self.ipg_bucket_has_moe_params = True
self.report_ipg_memory_usage("End ipg_remove_grads", 0)
def print_rank_0(self, message):
if dist.get_rank() == 0 and self.verbose:
print(message)
def gradient_reduction_w_predivide(self, tensor):
dp_world_size = dist.get_world_size(group=self.dp_process_group)
tensor_to_allreduce = tensor
if self.allreduce_always_fp32:
tensor_to_allreduce = tensor.float()
if self.postscale_gradients:
if self.gradient_predivide_factor != 1.0:
tensor_to_allreduce.mul_(1. / self.gradient_predivide_factor)
dist.all_reduce(tensor_to_allreduce, group=self.dp_process_group)
if self.gradient_predivide_factor != dp_world_size:
tensor_to_allreduce.mul_(
self.gradient_predivide_factor / dp_world_size)
else:
tensor_to_allreduce.div_(dp_world_size)
dist.all_reduce(tensor_to_allreduce, group=self.dp_process_group)
if self.allreduce_always_fp32 and tensor is not tensor_to_allreduce:
tensor.copy_(tensor_to_allreduce)
return tensor
def average_tensor(self, tensor):
if self.overlap_comm:
torch.cuda.synchronize()
stream = self.reduction_stream
else:
stream = torch.cuda.current_stream()
with torch.cuda.stream(stream):
if not self.reduce_scatter:
self.gradient_reduction_w_predivide(tensor)
return
# Accumulate destination ranks and bucket offsets for each gradient slice.
# Note: potential future optimization, record access pattern of parameters
# in backward pass and partition gradients w.r.t. access pattern so that our
# bucket is guaranteed to be contiguous w.r.t. ranks
rank_and_offsets = []
real_dp_process_group = []
curr_size = 0
prev_id = -1
process_group = self.dp_process_group
# count = 0
for i, param, param_id in self.params_in_ipg_bucket:
process_group = self.dp_process_group
# Averages gradients at parameter level if ipg has a moe param
# Otherwise averaging is done at the entire buffer level at the end of the loop
if self.ipg_bucket_has_moe_params:
process_group = self.expert_dp_process_group if is_moe_param(
param) else self.dp_process_group
param.grad.data.div_(
dist.get_world_size(group=process_group))
partition_ids = self.param_to_partition_ids[i][param_id]
partition_size = self.partition_size[i]
# Get all partition ids + their offsets
partition_ids_w_offsets = []
for partition_id in partition_ids:
offset = self.grad_start_offset[i][partition_id][param_id]
partition_ids_w_offsets.append((partition_id, offset))
partition_ids_w_offsets.sort(key=lambda t: t[1])
# Calculate rank and offsets for grad slices
for idx in range(len(partition_ids_w_offsets)):
partition_id, offset = partition_ids_w_offsets[idx]
# if dist.get_rank() == 0 and count < 100:
# print(f"Rank {dist.get_rank()} rank offet id {idx} calculated dp size {dist.get_world_size(group=process_group)} real dp size {dist.get_world_size(self.real_dp_process_group[i])} and dst: {partition_id}")
# count += 1
# Calculate numel for grad slice depending on partition location
if idx == len(partition_ids_w_offsets) - 1:
# Last partition_id uses its own offset
numel = param.numel() - offset
else:
# Set numel to next partition's offset
numel = partition_ids_w_offsets[idx + 1][1] - offset
# Merge bucket ranges if they belong to the same rank
if partition_id == prev_id:
prev_pid, prev_size, prev_numel = rank_and_offsets[-1]
rank_and_offsets[-1] = (prev_pid,
prev_size, prev_numel + numel)
else:
rank_and_offsets.append(
(partition_id, curr_size, numel))
real_dp_process_group.append(process_group)
curr_size += numel
prev_id = partition_id
if not self.ipg_bucket_has_moe_params:
tensor.div_(dist.get_world_size(group=self.dp_process_group))
async_handles = []
for i, (dst, bucket_offset, numel) in enumerate(rank_and_offsets):
grad_slice = tensor.narrow(0, int(bucket_offset), int(numel))
# if dist.get_rank() == 0:
# print(f"Rank {dist.get_rank()} rank offet id {i} real dp size {dist.get_world_size(group=real_dp_process_group[i])} and dst: {dst}")
# dist.barrier()
# dist.barrier()
dst_rank = _get_global_rank(real_dp_process_group[i], dst)
async_handle = dist.reduce(grad_slice,
dst=dst_rank,
group=real_dp_process_group[i],
async_op=True)
async_handles.append(async_handle)
for handle in async_handles:
handle.wait()
##############################################################################
############################# CPU Offload Methods#############################
##############################################################################
def get_grad_position(self, group_id, tensor_list, first_offset, partition_size):
current_offset = 0
for i, tensor in enumerate(tensor_list):
param_id = self.get_param_id(tensor)
param_start_offset = 0
num_elements = tensor.numel()
tensor_offset = 0
# we need to offset to get to the right element
if i == 0 and first_offset > 0:
tensor_offset = first_offset
num_elements = num_elements - tensor_offset
param_start_offset = first_offset
# we dont need all elements of the tensor
if num_elements > (partition_size - current_offset):
num_elements = partition_size - current_offset
self.grad_position[param_id] = [
int(group_id),
int(param_start_offset),
int(current_offset),
int(num_elements)
]
current_offset += num_elements
def update_overflow_tracker_for_param_grad(self, param):
if param.grad is not None and self._has_inf_or_nan(param.grad.data):
self.local_overflow = True
def async_accumulate_grad_in_cpu_via_gpu(self, param):
param_id = self.get_param_id(param)
[i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]
# copy to a preexisiting buffer to avoid memory allocation penalty
dest_buffer = self.temp_grad_buffer_for_gpu_offload.view(-1).narrow(
0,
0,
param.numel())
# buffer for storing gradients for this parameter in CPU
def buffer_to_accumulate_to_in_cpu():
if not self.fp16_master_weights_and_gradients:
return torch.zeros(param.numel(),
dtype=param.dtype,
device=self.device).pin_memory()
else:
return self.single_partition_of_fp32_groups[i].grad.view(-1).narrow(
0,
dest_offset,
num_elements)
# accumulate gradients into param.grad or parts of it that belongs to this parittion
def accumulate_gradients():
if not self.fp16_master_weights_and_gradients:
dest_buffer.copy_(self.accumulated_grads_in_cpu[param_id].view(-1),
non_blocking=True)
param.grad.data.view(-1).add_(dest_buffer)
else:
dest_buffer.narrow(0,
source_offset,
num_elements).copy_(
self.accumulated_grads_in_cpu[param_id].view(-1),
non_blocking=True)
param.grad.data.view(-1).narrow(
0,
source_offset,
num_elements).add_(dest_buffer.narrow(0,
source_offset,
num_elements))
# move accumulated gradients back to CPU
def copy_gradients_to_cpu():
if not self.fp16_master_weights_and_gradients:
self.accumulated_grads_in_cpu[param_id].data.copy_(
param.grad.data.view(-1),
non_blocking=True)
else:
self.accumulated_grads_in_cpu[param_id].data.copy_(
param.grad.data.view(-1).narrow(0,
source_offset,
num_elements),
non_blocking=True)
if param_id not in self.accumulated_grads_in_cpu:
self.accumulated_grads_in_cpu[param_id] = buffer_to_accumulate_to_in_cpu(
)
if self.micro_step_id > 0:
accumulate_gradients()
# at the boundary we will send 32bit directly
if not self.is_gradient_accumulation_boundary:
copy_gradients_to_cpu()
def set_norm_for_param_grad(self, param):
param_id = self.get_param_id(param)
accumulated_grad = self.accumulated_grads_in_cpu[
param_id] if self.gradient_accumulation_steps > 1 else param.grad
[i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]
start = source_offset
accumulated_grad = accumulated_grad.view(
-1).narrow(0, start, num_elements)
self.norm_for_param_grads[param_id] = accumulated_grad.data.double().norm(
2)
def set_norm_for_param_grad_in_gpu(self, param):
param_id = self.get_param_id(param)
accumulated_grad = param.grad
[i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]
start = source_offset
accumulated_grad = accumulated_grad.view(
-1).narrow(0, start, num_elements)
self.norm_for_param_grads[param_id] = accumulated_grad.data.double().norm(
2)
def async_inplace_copy_grad_to_fp32_buffer_from_gpu(self, param):
param_id = self.get_param_id(param)
[i, source_offset, dest_offset, num_elements] = self.grad_position[param_id]
dest_tensor = self.single_partition_of_fp32_groups[i].grad.view(-1).narrow(
0,
dest_offset,
num_elements)
src_tensor = param.grad.view(-1).narrow(0, source_offset, num_elements)
if not self.fp16_master_weights_and_gradients:
src_tensor = src_tensor.float()
dest_tensor.copy_(src_tensor, non_blocking=True)
param.grad = None # offload only
def complete_grad_norm_calculation_for_cpu_offload(self, params):
total_norm = 0.0
norm_type = 2.0
for p in params:
if is_model_parallel_parameter(p) or (self.model_parallel_rank == 0):
param_id = self.get_param_id(p)
# as some model have trainable parameters but skipped in training,
# their backward hooks in self.create_reduce_and_remove_grad_hooks() will not run,
# so they have no norm_for_param_grads
if param_id in self.norm_for_param_grads:
param_norm = self.norm_for_param_grads[param_id]
total_norm += param_norm.item() ** 2
else:
# As unused parameters in modules may not be expected sometimes,
# add an explicit error msg when it occurred and an option to
# avoid the error
assert self.ignore_unused_parameters, """
This assert indicates that your module has parameters that
were not used in producing loss.
You can avoid this assert by
(1) enable ignore_unused_parameters option in zero_optimization config;
(2) making sure all trainable parameters and `forward` function
outputs participate in calculating loss.
"""
# Sum across all model parallel GPUs.
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
torch.distributed.all_reduce(total_norm_cuda,
op=torch.distributed.ReduceOp.SUM,
group=self.dp_process_group)
self._model_parallel_all_reduce(tensor=total_norm_cuda,
op=torch.distributed.ReduceOp.SUM)
total_norm = total_norm_cuda[0].item() ** (1. / norm_type)
if total_norm == float(
'inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
############################################################################################
def copy_grads_in_partition(self, param):
if self.cpu_offload:
if self.gradient_accumulation_steps > 1:
self.async_accumulate_grad_in_cpu_via_gpu(param)
if self.is_gradient_accumulation_boundary:
self.set_norm_for_param_grad_in_gpu(param)
self.update_overflow_tracker_for_param_grad(param)
self.async_inplace_copy_grad_to_fp32_buffer_from_gpu(param)
return
# print(f"ID {self.get_param_id(param)} grad norm {param.grad.norm()}")
if self.grads_in_partition is None:
self.grads_in_partition_offset = 0
total_size = 0
for group in self.params_in_partition:
for param_in_partition in group:
total_size += param_in_partition.numel()
if self.verbose:
report_memory_usage(
f"before copying {total_size} gradients into partition")
self.grads_in_partition = torch.empty(int(total_size),
dtype=self.dtype,
device=torch.cuda.current_device())
if self.verbose:
report_memory_usage(
f"after copying {total_size} gradients into partition")
# The allreduce buffer will be rewritted. Copy the gradients in partition to a new buffer
new_grad_tensor = self.grads_in_partition.view(-1).narrow(
0,
self.grads_in_partition_offset,
param.numel())
new_grad_tensor.copy_(param.grad.view(-1))
param.grad.data = new_grad_tensor.data.view_as(param.grad)
# print(f"Grad norm after copy to contiguous_buffer {param.grad.data.norm()}")
self.grads_in_partition_offset += param.numel()
def reduce_ipg_grads(self):
if self.contiguous_gradients:
if self.extra_large_param_to_reduce is not None:
assert len(
self.params_in_ipg_bucket) == 1, "more than 1 param in ipg bucket, this shouldn't happen"
_, _, param_id = self.params_in_ipg_bucket[0]
assert self.get_param_id(
self.extra_large_param_to_reduce) == param_id, "param in ipg bucket does not match extra-large param"
self.average_tensor(
self.extra_large_param_to_reduce.grad.view(-1))
self.extra_large_param_to_reduce = None
else:
self.average_tensor(self.ipg_buffer[self.ipg_index])
else:
self.buffered_reduce_fallback(
None,
self.grads_in_ipg_bucket,
elements_per_buffer=self.elements_in_ipg_bucket)
if self.overlap_comm:
stream = self.reduction_stream
elif self.cpu_offload:
# TODO: copy_grad_stream is disabled because of race with reduce. This hurts perf and should be fixed.
# torch.cuda.synchronize()
# stream = self.copy_grad_stream
stream = torch.cuda.current_stream()
else:
stream = torch.cuda.current_stream()
with torch.cuda.stream(stream):
for _, param, param_id in self.params_in_ipg_bucket:
assert self.params_already_reduced[param_id] == False, \
f"The parameter {param_id} has already been reduced. \
Gradient computed twice for this partition. \
Multiple gradient reduction is currently not supported"
self.params_already_reduced[param_id] = True
if self.partition_gradients:
if not self.is_param_in_current_partition[param_id]:
if self.overlap_comm and self.contiguous_gradients is False:
# Clear grads of other partitions during the next reduction
# to avoid clearing them before the reduction is complete.
if self.previous_reduced_grads is None:
self.previous_reduced_grads = []
self.previous_reduced_grads.append(param)
else:
param.grad = None # only if self.partition_gradients
elif self.contiguous_gradients:
self.copy_grads_in_partition(param)
self.grads_in_ipg_bucket = []
self.params_in_ipg_bucket = []
self.ipg_bucket_has_moe_params = False
self.elements_in_ipg_bucket = 0
#####################################################################
def reduce_ready_partitions_and_remove_grads(self, param, i):
if self.partition_gradients or self.is_gradient_accumulation_boundary:
self.reduce_independent_p_g_buckets_and_remove_grads(param, i)
def zero_reduced_gradients(self, partition_id, i):
def are_all_related_partitions_reduced(params_id):
for partition_id in self.param_to_partition_ids[i][params_id]:
if not self.is_partition_reduced[i][partition_id]:
return False
return True
for params_id in self.is_grad_computed[i][partition_id]:
if are_all_related_partitions_reduced(params_id):
self.param_dict[params_id].grad = None # dead code
def flatten_and_print(self, message, tensors, start=0, n=5):
flatten_tensor = self.flatten(tensors)
def print_func():
print(flatten_tensor.contiguous().view(-1).narrow(0, start, n))
self.sequential_execution(print_func, message)
def get_grads_to_reduce(self, i, partition_id):
def get_reducable_portion(key):
grad = self.param_dict[key].grad
total_elements = grad.numel()
start = self.grad_start_offset[i][partition_id][key]
num_elements = min(
total_elements - start,
self.partition_size[i] -
self.grad_partition_insertion_offset[i][partition_id][key])
if not pg_correctness_test:
if num_elements == total_elements:
return grad
else:
return grad.contiguous().view(-1).narrow(0,
int(start),
int(num_elements))
else:
if num_elements == total_elements:
return grad.clone()
else:
return grad.clone().contiguous().view(-1).narrow(
0,
int(start),
int(num_elements))
grads_to_reduce = []
for key in self.is_grad_computed[i][partition_id]:
grad = get_reducable_portion(key)
grads_to_reduce.append(grad)
return grads_to_reduce
def sequential_execution(self, function, message, group=None):
if group is None:
group = self.dp_process_group
if dist.get_rank(group=group) == 0:
print(message)
for id in range(dist.get_world_size(group=group)):
if id == dist.get_rank(group=group):
function()
dist.barrier(group=group)
def set_none_gradients_to_zero(self, i, partition_id):
for param_id in self.is_grad_computed[i][partition_id]:
param = self.param_dict[param_id]
if param.grad is None:
param.grad = torch.zero_like(param)
######################Reduction Related Methods##############################
def allreduce_bucket(self, bucket, allreduce_always_fp32=False, rank=None, log=None):
rank = None
tensor = self.flatten(bucket)
tensor_to_allreduce = tensor
if pg_correctness_test:
allreduce_always_fp32 = True
if allreduce_always_fp32:
tensor_to_allreduce = tensor.float()
tensor_to_allreduce.div_(
dist.get_world_size(group=self.dp_process_group))
if rank is None:
# "All Reducing"
dist.all_reduce(tensor_to_allreduce, group=self.dp_process_group)
else:
global_rank = _get_global_rank(self.dp_process_group, rank)
dist.reduce(tensor_to_allreduce, global_rank,
group=self.dp_process_group)
if allreduce_always_fp32 and tensor is not tensor_to_allreduce:
if rank is None or rank == dist.get_rank(group=self.dp_process_group):
tensor.copy_(tensor_to_allreduce)
return tensor
def _clear_previous_reduced_grads(self):
if self.previous_reduced_grads is not None:
for param in self.previous_reduced_grads:
param.grad = None # overlap enabled
self.previous_reduced_grads = None
# if rank is specified do a reduction instead of an allreduce
def allreduce_and_copy(self, small_bucket, rank=None, log=None):
if self.overlap_comm:
torch.cuda.synchronize()
# It is safe to clear the previously reduced grads of other partitions
self._clear_previous_reduced_grads()
stream = self.reduction_stream
else:
stream = torch.cuda.current_stream()
with torch.cuda.stream(stream):
allreduced = self.allreduce_bucket(
small_bucket, rank=rank, log=log)
if rank is None or rank == dist.get_rank(group=self.dp_process_group):
for buf, synced in zip(small_bucket, self.unflatten(allreduced, small_bucket)):
buf.copy_(synced)
def allreduce_no_retain(self,
bucket,
numel_per_bucket=500000000,
rank=None,
log=None):
small_bucket = []
numel = 0
for tensor in bucket:
small_bucket.append(tensor)
numel = numel + tensor.numel()
if numel > numel_per_bucket:
self.allreduce_and_copy(small_bucket, rank=rank, log=None)
small_bucket = []
if len(small_bucket) > 0:
self.allreduce_and_copy(small_bucket, rank=rank, log=log)
# allows using reduction of gradients instead of using all_reduce
def buffered_reduce_fallback(self,
rank,
grads,
elements_per_buffer=500000000,
log=None):
split_buckets = split_half_float_double(grads)
for i, bucket in enumerate(split_buckets):
self.allreduce_no_retain(bucket,
numel_per_bucket=elements_per_buffer,
rank=rank,
log=log)
#############################################################################
#############################################################################
#############################################################################
# views the tensor as multiple partitions and returns
# those partitions
def get_data_parallel_partitions(self, tensor, group_id):
partitions = []
dp = dist.get_world_size(group=self.real_dp_process_group[group_id])
dp_id = dist.get_rank(group=self.real_dp_process_group[group_id])
total_num_elements = tensor.numel()
base_size = total_num_elements // dp
remaining = total_num_elements % dp
start = 0
for id in range(dp):
partition_size = base_size
if id < remaining:
partition_size = partition_size + 1
partitions.append(tensor.narrow(0, start, partition_size))
start = start + partition_size
return partitions
def get_partition_info(self, tensor_list, partition_size, partition_id):
params_in_partition = []
params_not_in_partition = []
start_index = partition_size * partition_id
end_index = partition_size * (partition_id + 1)
current_index = 0
first_offset = 0
for tensor in tensor_list:
tensor_size = tensor.numel()
if (current_index >= start_index and current_index < end_index):
params_in_partition.append(tensor)
elif start_index > current_index and start_index < (current_index +
tensor_size):
params_in_partition.append(tensor)
assert (
first_offset == 0), "This can happen either zero or only once as this must be the first tensor in the partition"
first_offset = start_index - current_index
else:
params_not_in_partition.append(tensor)
current_index = current_index + tensor_size
return params_in_partition, params_not_in_partition, first_offset
def zero_grad(self, set_grads_to_None=True):
"""
Zero FP16 parameter grads.
"""
# FP32 grad should never exist.
# For speed, set model fp16 grad to None by default
for group in self.fp16_groups:
for p in group:
if set_grads_to_None:
p.grad = None # epilogue and in step
else:
if p.grad is not None:
p.grad.detach_()
p.grad.zero_()
def _model_parallel_all_reduce(self, tensor, op):
""" Perform all reduce within model parallel group, if any.
"""
if self.model_parallel_group is None:
pass
else:
torch.distributed.all_reduce(tensor=tensor,
op=op,
group=self.model_parallel_group)
def get_grad_norm_direct(self, gradients, params, norm_type=2):
"""Clips gradient norm of an iterable of parameters.
This is adapted from ``torch.nn.utils.clip_grad.clip_grad_norm_`` and
added functionality to handle model parallel parameters. Note that
the gradients are modified in place.
Arguments:
parameters (Iterable[Tensor] or Tensor): an iterable of Tensors or a
single Tensor that will have gradients normalized
max_norm (float or int): max norm of the gradients
norm_type (float or int): type of the used p-norm. Can be ``'inf'`` for
infinity norm.
Returns:
Total norm of the parameters (viewed as a single vector).
"""
norm_type = float(norm_type)
if norm_type == inf:
total_norm = max(g.data.abs().max() for g in gradients)
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
torch.distributed.all_reduce(total_norm_cuda,
op=torch.distributed.ReduceOp.MAX,
group=self.dp_process_group)
# Take max across all GPUs.
self._model_parallel_all_reduce(tensor=total_norm_cuda,
op=torch.distributed.ReduceOp.MAX)
total_norm = total_norm_cuda[0].item()
else:
total_norm = 0.0
# if dist.get_rank() == 0:
# print()(f"Total Norm begining {total_norm}")
for g, p in zip(gradients, params):
if is_model_parallel_parameter(p) or (self.model_parallel_rank == 0):
param_norm = g.data.double().norm(2)
total_norm += param_norm.item() ** 2
# Sum across all model parallel GPUs.
total_norm_cuda = torch.cuda.FloatTensor([float(total_norm)])
torch.distributed.all_reduce(total_norm_cuda,
op=torch.distributed.ReduceOp.SUM,
group=self.dp_process_group)
self._model_parallel_all_reduce(tensor=total_norm_cuda,
op=torch.distributed.ReduceOp.SUM)
total_norm = total_norm_cuda[0].item() ** (1. / norm_type)
if total_norm == float(
'inf') or total_norm == -float('inf') or total_norm != total_norm:
total_norm = -1
return total_norm
# creates a flat fused tensor from the tensor list starting at the first_offset
# in the first tensor of the list. If there are not enough elements in the tensor
# list then the flat tensor will be padded with zeros
def get_flat_partition(self,
tensor_list,
first_offset,
partition_size,
dtype,
device,
return_tensor_list=False):
flat_tensor_list = []
current_size = 0
for i, tensor in enumerate(tensor_list):
if tensor.grad is None:
tensor.grad = torch.zeros_like(tensor)
tensor = tensor.grad
num_elements = tensor.numel()
tensor_offset = 0
# we need to offset to get to the right element
if i == 0 and first_offset > 0:
tensor_offset = first_offset
num_elements = num_elements - tensor_offset
# we dont need all elements of the tensor
if num_elements > (partition_size - current_size):
num_elements = partition_size - current_size
# we need a narrow view of the tensor based on the tensor offset and number of elements that
# we need from this tensor
if tensor_offset > 0 or num_elements < tensor.numel():
flat_tensor_list.append(tensor.contiguous().view(-1).narrow(
0,
int(tensor_offset),
int(num_elements)))
else:
flat_tensor_list.append(tensor)
current_size = current_size + num_elements
# this means its the last partition and does not align with the dp boundary. We need to pad before flattening
if current_size < partition_size:
flat_tensor_list.append(
torch.zeros(int(partition_size - current_size),
dtype=dtype,
device=device))
if return_tensor_list:
return flat_tensor_list
return self.flatten(flat_tensor_list)
def free_grad_in_param_list(self, param_list):
for p in param_list:
p.grad = None # in step
def reset_cpu_buffers(self):
self.norm_for_param_grads = {}
self.local_overflow = False
def log_timers(self, timer_names):
if self.timers is None:
return
self.timers.log(names=list(timer_names))
def start_timers(self, timer_names):
if self.timers is None:
return
for name in timer_names:
self.timers(name).start()
def stop_timers(self, timer_names):
if self.timers is None:
return
for name in timer_names:
self.timers(name).stop()
def step(self, closure=None):
"""
Not supporting closure.
"""
self.micro_step_id = -1
if self.verbose:
report_memory_usage(f"In step before checking overflow")
# First compute norm for all group so we know if there is overflow
self.check_overflow(self.partition_gradients)
OPTIMIZER_ALLGATHER = 'optimizer_allgather'
OPTIMIZER_GRADIENTS = 'optimizer_gradients'
OPTIMIZER_STEP = 'optimizer_step'
timer_names = [OPTIMIZER_ALLGATHER,
OPTIMIZER_GRADIENTS, OPTIMIZER_STEP]
prev_scale = self.loss_scale
self._update_scale(self.overflow)
if self.overflow:
if self.verbose:
report_memory_usage('After overflow before clearing gradients')
self.zero_grad()
if self.cpu_offload:
self.reset_cpu_buffers()
else:
self.averaged_gradients = {}
if self.verbose:
report_memory_usage('After overflow after clearing gradients')
print(
"[deepspeed] fp16 dynamic loss scale overflow! Rank {} Skipping step. Attempted loss scale: {}, "
"reducing to {}".format(dist.get_rank(),
prev_scale,
self.loss_scale))
self.start_timers(timer_names)
self.stop_timers(timer_names)
return
self.start_timers([OPTIMIZER_GRADIENTS])
norm_groups = []
single_partition_grad_groups = []
skip = False
for i, group in enumerate(self.fp16_groups):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
if self.cpu_offload:
norm_groups.append(
self.complete_grad_norm_calculation_for_cpu_offload(
self.params_in_partition[i]))
single_grad_partition = self.single_partition_of_fp32_groups[i].grad
else:
norm_groups.append(
self.get_grad_norm_direct(self.averaged_gradients[i],
self.params_in_partition[i]))
# free gradients for all the prameters that are not updated by this process
self.free_grad_in_param_list(self.params_not_in_partition[i])
# create a flat gradients for parameters updated by this process
# If we are last partition, ensure we have same size grads and partition size, if not pad with zero tensors
if partition_id == dist.get_world_size(
group=self.real_dp_process_group[i]) - 1:
single_grad_partition = self.flatten_dense_tensors_aligned(
self.averaged_gradients[i],
int(self.partition_size[i])).to(
self.single_partition_of_fp32_groups[i].dtype)
else:
single_grad_partition = self.flatten(self.averaged_gradients[i]).to(
self.single_partition_of_fp32_groups[i].dtype)
assert single_grad_partition.numel() == self.partition_size[i], \
"averaged gradients have different number of elements that partition size {} {} {} {}".format(
single_grad_partition.numel(), self.partition_size[i], i, partition_id)
self.single_partition_of_fp32_groups[i].grad = single_grad_partition
# release all the gradient since we have already created a necessary copy in dp_grad_partition
self.free_grad_in_param_list(self.params_in_partition[i])
self.averaged_gradients[i] = None
single_partition_grad_groups.append(single_grad_partition)
if self.has_moe_layers:
self._average_expert_grad_norms(norm_groups)
self.unscale_and_clip_grads(single_partition_grad_groups, norm_groups)
self.stop_timers([OPTIMIZER_GRADIENTS])
self.start_timers([OPTIMIZER_STEP])
if self.deepspeed_adam_offload:
from deepspeed.ops.adam import DeepSpeedCPUAdam
if type(self.optimizer) == DeepSpeedCPUAdam and self.dtype == torch.half:
fp16_param_groups = [
fp16_partitions[partition_id]
for fp16_partitions in self.parallel_partitioned_fp16_groups
]
self.optimizer.step(fp16_param_groups=fp16_param_groups)
else:
self.optimizer.step()
for fp16_partitions, fp32_partition in zip(self.parallel_partitioned_fp16_groups,
self.single_partition_of_fp32_groups):
fp16_partitions[partition_id].data.copy_(
fp32_partition.data)
else:
self.optimizer.step()
# get rid of the fp32 gradients. Not needed anymore
if not self.cpu_offload:
for group in self.single_partition_of_fp32_groups:
group.grad = None # in step
for fp16_partitions, fp32_partition in zip(self.parallel_partitioned_fp16_groups,
self.single_partition_of_fp32_groups):
fp16_partitions[partition_id].data.copy_(fp32_partition.data)
self.stop_timers([OPTIMIZER_STEP])
if self.cpu_offload:
self.reset_cpu_buffers()
self.start_timers([OPTIMIZER_ALLGATHER])
# gather the updated weights from everyone
for group_id, partitioned_params in enumerate(self.parallel_partitioned_fp16_groups):
# Sequential AllGather Best of both worlds
dp_world_size = dist.get_world_size(
group=self.real_dp_process_group[group_id])
num_shards = max(
1,
partitioned_params[partition_id].numel() * dp_world_size //
self.allgather_bucket_size)
shard_size = partitioned_params[partition_id].numel() // num_shards
num_elements = shard_size
assert shard_size * \
num_shards <= partitioned_params[partition_id].numel()
for shard_id in range(num_shards):
if shard_id == (num_shards - 1):
num_elements = partitioned_params[partition_id].numel(
) - shard_id * shard_size
shard_list = []
for dp_id in range(dp_world_size):
curr_shard = partitioned_params[dp_id].narrow(
0,
shard_id * shard_size,
num_elements).detach()
shard_list.append(curr_shard)
dist.all_gather(shard_list,
shard_list[partition_id],
group=self.real_dp_process_group[group_id])
self.stop_timers([OPTIMIZER_ALLGATHER])
# TODO: we probably don't need this? just to be safe
for i in range(len(norm_groups)):
self._update_model_fp16_weights(i)
self.log_timers(timer_names)
if self.verbose:
report_memory_usage('After zero_optimizer step')
return
def _average_expert_grad_norms(self, norm_groups):
for i, norm in enumerate(norm_groups):
if self.is_moe_param_group[i]:
scaled_norm = norm * 1.0 / float(
dist.get_world_size(group=self.ep_process_group))
scaled_norm_tensor = torch.tensor(scaled_norm,
device='cuda',
dtype=torch.float)
dist.all_reduce(scaled_norm_tensor,
group=self.ep_process_group)
norm_groups[i] = scaled_norm_tensor.item()
def unscale_and_clip_grads(self, grad_groups_flat, norm_groups):
total_norm = 0.0
for norm in norm_groups:
total_norm += norm ** 2.0
total_norm = math.sqrt(total_norm)
# compute combined scale factor for this group
combined_scale = self.loss_scale
if self.clip_grad > 0.:
# norm is in fact norm*scale
clip = ((total_norm / self.loss_scale) + 1e-6) / self.clip_grad
if clip > 1:
combined_scale = clip * self.loss_scale
for grad in grad_groups_flat:
if isinstance(grad, list):
sub_partitions = grad
for g in sub_partitions:
g.data.mul_(1. / combined_scale)
else:
grad.data.mul_(1. / combined_scale)
def _check_overflow(self, partition_gradients=True):
self.overflow = self.has_overflow(partition_gradients)
# `params` is a list / generator of torch.Variable
def has_overflow_serial(self, params, is_grad_list=False):
for p in params:
if p.grad is not None and self._has_inf_or_nan(p.grad.data):
return True
return False
def has_overflow_partitioned_grads_serial(self):
for i in range(len(self.fp16_groups)):
for j, grad in enumerate(self.averaged_gradients[i]):
if grad is not None and self._has_inf_or_nan(grad.data, j):
return True
return False
def has_overflow(self, partition_gradients=True):
if partition_gradients:
overflow = self.local_overflow if self.cpu_offload else self.has_overflow_partitioned_grads_serial(
)
overflow_gpu = torch.cuda.ByteTensor([overflow])
'''This will capture overflow across all data parallel and expert parallel process
Since expert parallel process are a subset of data parallel process'''
torch.distributed.all_reduce(overflow_gpu,
op=torch.distributed.ReduceOp.MAX,
group=self.dp_process_group)
else:
params = []
for group in self.fp16_groups:
for param in group:
params.append(param)
overflow = self.has_overflow_serial(
params, is_grad_list=partition_gradients)
overflow_gpu = torch.cuda.ByteTensor([overflow])
# Since each model parallel GPU carries only part of the model,
# make sure overflow flag is synced across all the model parallel GPUs
self._model_parallel_all_reduce(tensor=overflow_gpu,
op=torch.distributed.ReduceOp.MAX)
overflow = overflow_gpu[0].item()
return bool(overflow)
# `x` is a torch.Tensor
@staticmethod
def _has_inf_or_nan(x, j=None):
try:
# if x is half, the .float() incurs an additional deep copy, but it's necessary if
# Pytorch's .sum() creates a one-element tensor of the same type as x
# (which is true for some recent version of pytorch).
cpu_sum = float(x.float().sum())
# More efficient version that can be used if .sum() returns a Python scalar
# cpu_sum = float(x.sum())
except RuntimeError as instance:
# We want to check if inst is actually an overflow exception.
# RuntimeError could come from a different error.
# If so, we still want the exception to propagate.
if "value cannot be converted" not in instance.args[0]:
raise
return True
else:
if cpu_sum == float('inf') or cpu_sum == -float('inf') or cpu_sum != cpu_sum:
return True
return False
def backward(self, loss, retain_graph=False):
"""
:attr:`backward` performs the following steps:
1. fp32_loss = loss.float()
2. scaled_loss = fp32_loss*loss_scale
3. scaled_loss.backward(), which accumulates scaled gradients into the ``.grad`` attributes of the model's fp16 leaves
"""
self.micro_step_id += 1
if self.contiguous_gradients:
self.ipg_buffer = []
buf_0 = torch.empty(int(self.reduce_bucket_size),
dtype=self.dtype,
device=torch.cuda.current_device())
self.ipg_buffer.append(buf_0)
# Use double buffers to avoid data access conflict when overlap_comm is enabled.
if self.overlap_comm:
buf_1 = torch.empty(int(self.reduce_bucket_size),
dtype=self.dtype,
device=torch.cuda.current_device())
self.ipg_buffer.append(buf_1)
self.ipg_index = 0
self.loss_scaler.backward(loss.float(), retain_graph=retain_graph)
def check_overflow(self, partition_gradients=True):
self._check_overflow(partition_gradients)
def _update_scale(self, has_overflow=False):
self.loss_scaler.update_scale(has_overflow)
# Promote state so it can be retrieved or set via "fp16_optimizer_instance.state"
def _get_state(self):
return self.optimizer.state
def _set_state(self, value):
self.optimizer.state = value
state = property(_get_state, _set_state)
# Promote param_groups so it can be retrieved or set via "fp16_optimizer_instance.param_groups"
# (for example, to adjust the learning rate)
def _get_param_groups(self):
return self.optimizer.param_groups
def _set_param_groups(self, value):
self.optimizer.param_groups = value
param_groups = property(_get_param_groups, _set_param_groups)
# Promote loss scale so it can be retrieved or set via "fp16_optimizer_instance.loss_scale"
def _get_loss_scale(self):
return self.loss_scaler.loss_scale
def _set_loss_scale(self, value):
self.loss_scaler.cur_scale = value
loss_scale = property(_get_loss_scale, _set_loss_scale)
cur_scale = property(_get_loss_scale, _set_loss_scale)
# Return group tensor after removing paddings that are added for alignment to DP world size.
# This method works on the assumption that each group contains a single flattened tensor.
def _get_groups_without_padding(self, groups_with_padding):
groups_without_padding = []
for i, group in enumerate(groups_with_padding):
lean_length = group.numel() - self.groups_padding[i]
groups_without_padding.append(group[:lean_length])
return groups_without_padding
# Return optimizer state after removing paddings that are added for alignment.
def _get_state_without_padding(self, state_with_padding, padding):
lean_state = {}
for key, value in state_with_padding.items():
if torch.is_tensor(value):
lean_length = value.numel() - padding
lean_state[key] = value[:lean_length]
else:
lean_state[key] = value
return lean_state
# Return base optimizer states.
# This method assumes that each param group contains a single flattened tensor.
def _get_base_optimizer_state(self):
optimizer_groups_state = []
for i, group in enumerate(self.optimizer.param_groups):
p = group['params'][0]
lean_optimizer_state = self._get_state_without_padding(
self.optimizer.state[p],
self.groups_padding[i])
optimizer_groups_state.append(lean_optimizer_state)
return optimizer_groups_state
def state_dict(self):
"""
Returns a dict containing the current state of this :class:`FP16_Optimizer` instance.
This dict contains attributes of :class:`FP16_Optimizer`, as well as the state_dict
of the contained Pytorch optimizer.
Example::
checkpoint = {}
checkpoint['model'] = model.state_dict()
checkpoint['optimizer'] = optimizer.state_dict()
torch.save(checkpoint, "saved.pth")
"""
state_dict = {}
state_dict['loss_scaler'] = self.loss_scaler
state_dict['dynamic_loss_scale'] = self.dynamic_loss_scale
state_dict['overflow'] = self.overflow
state_dict['base_optimizer_state'] = self._get_base_optimizer_state()
state_dict['zero_stage'] = ZERO_OPTIMIZATION_GRADIENTS
state_dict['partition_count'] = self.partition_count
state_dict['ds_version'] = version
# Remove paddings for DP alignment to enable loading for other alignment values
fp32_groups_without_padding = self._get_groups_without_padding(
self.single_partition_of_fp32_groups)
state_dict['single_partition_of_fp32_groups'] = fp32_groups_without_padding
# if self.cpu_offload:
# state_dict_tmp = async_copy_to(state_dict,
# 'cpu',
# torch.cuda.current_stream())
# state_dict = state_dict_tmp
return state_dict
# Restore base optimizer fp32 weights from checkpoint by:
# 1) Merging fp32 weights from checkpoints of all partitions
# 2) Extracting fp32 weights for current partition from merged weights
# 3) Using extracted weights to update base optimizer weights directly.
def _restore_from_fp32_weights(self, all_state_dict):
merged_single_partition_of_fp32_groups = []
for i in range(len(self.single_partition_of_fp32_groups)):
partition_id = dist.get_rank(group=self.real_dp_process_group[i])
merged_partitions = [
sd['single_partition_of_fp32_groups'][i] for sd in all_state_dict
]
flat_merged_partitions = self.flatten_dense_tensors_aligned(
merged_partitions,
self.nccl_start_alignment_factor *
dist.get_world_size(group=self.real_dp_process_group[i]))
dp_partitions = self.get_data_parallel_partitions(
flat_merged_partitions, i)
merged_single_partition_of_fp32_groups.append(
dp_partitions[partition_id])
for current, saved in zip(self.single_partition_of_fp32_groups, merged_single_partition_of_fp32_groups):
current.data.copy_(saved.data)
# Restore base optimizer fp32 weights from ZeRO fp16 weights
def _restore_from_fp16_weights(self):
for group_id, fp16_partitions, fp32_partition in enumerate(
zip(self.parallel_partitioned_fp16_groups, self.single_partition_of_fp32_groups)):
partition_id = dist.get_rank(
group=self.real_dp_process_group[group_id])
fp32_partition.data.copy_(fp16_partitions[partition_id].data)
# Refresh the fp32 master params from the fp16 copies.
def refresh_fp32_params(self):
self._restore_from_fp16_weights()
# Extract optimizer state for current partition from merged states of all partitions
def _partition_base_optimizer_state(self, state_key, all_partition_states, group_id):
partition_id = dist.get_rank(
group=self.real_dp_process_group[group_id])
alignment = dist.get_world_size(
group=self.real_dp_process_group[group_id])
if torch.is_tensor(all_partition_states[0]):
flat_merged_partitions = self.flatten_dense_tensors_aligned(
all_partition_states,
alignment)
dp_partitions = self.get_data_parallel_partitions(flat_merged_partitions,
group_id)
return dp_partitions[partition_id]
else:
# Assume non-tensor states are not partitioned and equal across ranks, so return first one
return all_partition_states[0]
# Restore base optimizer state from checkpoint by
# 1) Merging optimizer state from checkpoints of all partitions
# 2) Extracting optimizer state for current partition from the merged state
# 3) Using the extracted value to directly update the base optimizer.
def _restore_base_optimizer_state(self, all_state_dict):
base_optimizer_group_states = []
for i in range(len(self.optimizer.param_groups)):
partition_states = {}
all_partition_group_states = [
sd['base_optimizer_state'][i] for sd in all_state_dict
]
for key in all_partition_group_states[0].keys():
all_partition_states = [
all_states[key] for all_states in all_partition_group_states
]
partition_states[key] = self._partition_base_optimizer_state(
key,
all_partition_states,
i)
base_optimizer_group_states.append(partition_states)
for i, group in enumerate(self.optimizer.param_groups):
p = group['params'][0]
for key, saved in base_optimizer_group_states[i].items():
if torch.is_tensor(self.optimizer.state[p][key]):
self.optimizer.state[p][key].data.copy_(saved.data)
else:
self.optimizer.state[p][key] = saved
def load_state_dict(self,
state_dict_list,
load_optimizer_states=True,
load_from_fp32_weights=False):
r"""Loading ZeRO checkpoint
Arguments:
state_dict_list: List of all saved ZeRO checkpoints, one for each saved partition.
Note that the number of saved partitions may differ from number of loading partitions to support
changing GPU count, specifically DP world size, between saving and loading checkpoints.
load_optimizer_states: Boolean indicating whether or not to load base optimizer states
load_from_fp32_weights: Boolean indicating whether to initialize fp32 master weights from fp32
copies in checkpoints (no precision loss) or from model's fp16 copies (with precision loss).
"""
"""
Loads a state_dict created by an earlier call to state_dict().
If ``fp16_optimizer_instance`` was constructed from some ``init_optimizer``,
whose parameters in turn came from ``model``, it is expected that the user
will call ``model.load_state_dict()`` before
``fp16_optimizer_instance.load_state_dict()`` is called.
Example::
model = torch.nn.Linear(D_in, D_out).cuda().half()
optimizer = torch.optim.SGD(model.parameters(), lr=1e-3)
optimizer = FP16_Optimizer(optimizer, static_loss_scale = 128.0)
...
checkpoint = torch.load("saved.pth")
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
"""
# I think it should actually be ok to reload the optimizer before the model.
self.loss_scaler = state_dict_list[0]['loss_scaler']
self.dynamic_loss_scale = state_dict_list[0]['dynamic_loss_scale']
self.overflow = state_dict_list[0]['overflow']
# zero stage 1 mode
if not self.partition_gradients:
required_version = pkg_version.parse("0.3.17")
ckpt_version = state_dict_list[0].get("ds_version", False)
error_str = f"ZeRO stage 1 changed in {required_version} and is not backwards compatible " \
"with older stage 1 checkpoints. If you'd like to load an old ZeRO-1 checkpoint " \
"please set 'legacy_stage1': true in your zero config json. This old version of " \
"stage 1 will be removed in v0.4.0."
assert ckpt_version, f"Empty ds_version! {error_str}"
assert required_version <= pkg_version.parse(
ckpt_version), f"Old version: {ckpt_version} {error_str}"
if load_optimizer_states:
self._restore_base_optimizer_state(state_dict_list)
# At this point, the optimizer's references to the model's fp32 parameters are up to date.
# The optimizer's hyperparameters and internal buffers are also up to date.
# However, the fp32 master copies of the model's fp16 params stored by the optimizer are still
# out of date. There are two options.
# 1: Refresh the master params from the model's fp16 params.
# This requires less storage but incurs precision loss.
# 2: Save and restore the fp32 master copies separately.
# We choose option 1 if changing DP degree and option 2 otherwise.
#
# Pytorch Optimizer.load_state_dict casts saved buffers (e.g. momentum) to the type and device
# of their associated parameters, because it's possible those buffers might not exist yet in
# the current optimizer instance. In our case, as long as the current FP16_Optimizer has been
# constructed in the same way as the one whose state_dict we are loading, the same master params
# are guaranteed to exist, so we can just copy_() from the saved master params.
if load_from_fp32_weights:
self._restore_from_fp32_weights(state_dict_list)
else:
self._restore_from_fp16_weights()
def allreduce_gradients(self):
self.overlapping_partition_gradients_reduce_epilogue()
def _handle_overflow(cpu_sum, x, i):
import math
rank = torch.distributed.get_rank()
if rank == 0:
t_i = -1
for v_i, v in enumerate(x.data.contiguous().view(-1)):
if not math.isfinite(float(v)):
t_i = v_i
break
print(
f"rank {rank} detected overflow {cpu_sum} in tensor {i}:{t_i} shape {x.shape}"
)
def estimate_zero2_model_states_mem_needs(total_params,
num_gpus_per_node=1,
num_nodes=1,
cpu_offload=True,
additional_buffer_factor=1.5):
total_gpus = num_nodes * num_gpus_per_node
if cpu_offload:
gpu_mem = 2 * total_params
cpu_mem = total_params * \
max(4 * total_gpus, 16) * additional_buffer_factor
else:
gpu_mem = 4 * total_params + int(16 * total_params / total_gpus)
cpu_mem = total_params * 4 * num_gpus_per_node * additional_buffer_factor
return int(cpu_mem), int(gpu_mem)
def model_to_params(model):
# shared params calculated only once
total_params = sum(
dict((p.data_ptr(),
p.numel()) for p in model.parameters()).values())
return total_params
def estimate_zero2_model_states_mem_needs_all_live(model,
num_gpus_per_node=1,
num_nodes=1,
additional_buffer_factor=1.5):
"""
Print out estimates on memory usage requirements for ZeRO 2 params, optim states and gradients
for a given ``model`` and hardware setup.
If you have an actual model object, use this function and everything will be derived
automatically.
If it's a hypothetical model, use ``estimate_zero2_model_states_mem_needs_all_cold`` where you have to pass
the ``total_params`` explicitly.
Args:
- ``model``: ``nn.Module`` object
- ``num_gpus_per_node``: how many gpus per node (defaults to 1)
- ``num_nodes``: how many nodes (defaults to 1),
- ``additional_buffer_factor``: estimation factor (defaults to 1.5):
"""
total_params = model_to_params(model)
estimate_zero2_model_states_mem_needs_all_cold(
total_params=total_params,
num_gpus_per_node=num_gpus_per_node,
num_nodes=num_nodes,
additional_buffer_factor=additional_buffer_factor)
def estimate_zero2_model_states_mem_needs_all_cold(total_params,
num_gpus_per_node=1,
num_nodes=1,
additional_buffer_factor=1.5):
"""
Print out estimates on memory usage requirements for ZeRO 2 params, optim states and gradients
for a given ``model`` and hardware setup.
If it's a hypothetical model, use this function where you have to pass
the ``total_params`` and ``largest_layer_params`` explicitly.
If you have an actual model object, use ``estimate_zero2_model_states_mem_needs_all_live`` and everything
will be derived automatically.
Args:
- ``total_params``: total model params
- ``num_gpus_per_node``: how many gpus per node (defaults to 1)
- ``num_nodes``: how many nodes (defaults to 1),
- ``additional_buffer_factor``: estimation factor (defaults to 1.5):
"""
def format_options(cpu_offload):
enabled = []
enabled.append(f"cpu_offload={1 if cpu_offload else 0}")
return ", ".join(enabled)
nodes_str = "nodes" if num_nodes > 1 else "node"
gpus_str = "GPUs" if num_gpus_per_node > 1 else "GPU"
print(
"Estimated memory needed for params, optim states and gradients for a:\n"
f"HW: Setup with {num_nodes} {nodes_str}, {num_gpus_per_node} {gpus_str} per node.\n"
f"SW: Model with {int(total_params / 1e6)}M total params.")
print(" per CPU | per GPU | Options")
for cpu_offload in [True, False]:
cpu_mem, gpu_mem = estimate_zero2_model_states_mem_needs(
total_params=total_params,
num_gpus_per_node=num_gpus_per_node,
num_nodes=num_nodes,
cpu_offload=cpu_offload,
additional_buffer_factor=additional_buffer_factor
)
options_str = format_options(cpu_offload=cpu_offload)
print(
f" {cpu_mem / 2 ** 30:7.2f}GB | {gpu_mem / 2 ** 30:6.2f}GB | {options_str}")