mirror of https://github.com/hpcaitech/ColossalAI
173 lines
6.5 KiB
Python
173 lines
6.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import math
|
|
from typing import Tuple
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from colossalai.context import ParallelMode, seed
|
|
from colossalai.registry import LAYERS
|
|
from colossalai.utils import get_current_device
|
|
from torch import Tensor, dtype
|
|
from torch.nn import Parameter
|
|
|
|
from .._common_utils import divide, set_tensor_parallel_attribute
|
|
from ._operation import Add_3D, Matmul_AB_3D, Mul_3D, Sum_3D
|
|
from ._utils import get_depth_from_env, get_last_group
|
|
|
|
|
|
@LAYERS.register_module
|
|
class LayerNorm3D(nn.Module):
|
|
def __init__(
|
|
self,
|
|
normalized_shape: int,
|
|
input_parallel_mode: ParallelMode,
|
|
weight_parallel_mode: ParallelMode,
|
|
eps: float = 1e-12,
|
|
dtype: dtype = None,
|
|
):
|
|
super().__init__()
|
|
self.input_parallel_mode = input_parallel_mode
|
|
self.weight_parallel_mode = weight_parallel_mode
|
|
self.output_parallel_mode = get_last_group(self.input_parallel_mode,
|
|
self.weight_parallel_mode)
|
|
self.depth = get_depth_from_env()
|
|
self.normalized_shape = normalized_shape
|
|
self.normalized_shape_per_partition = divide(normalized_shape,
|
|
self.depth**2)
|
|
|
|
self.weight = Parameter(
|
|
torch.ones(self.normalized_shape_per_partition,
|
|
device=get_current_device(),
|
|
dtype=dtype))
|
|
self.bias = Parameter(
|
|
torch.zeros(self.normalized_shape_per_partition,
|
|
device=get_current_device(),
|
|
dtype=dtype))
|
|
self.variance_epsilon = eps
|
|
self._set_tensor_parallel_attributes()
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
set_tensor_parallel_attribute(self.weight)
|
|
set_tensor_parallel_attribute(self.bias)
|
|
|
|
def groups_for_next_layer(self) -> Tuple[ParallelMode, ParallelMode]:
|
|
return self.input_parallel_mode, self.weight_parallel_mode
|
|
|
|
def reset_parameters(self):
|
|
nn.init.zeros_(self.bias)
|
|
nn.init.ones_(self.weight)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
'''x = weight * (x - mean) / sqrt(var + eps) + bias'''
|
|
# input: [m/q^2, n, h/q]
|
|
# [m/q^2, n, 1]
|
|
mean = Sum_3D.apply(input_, -1, self.depth, self.output_parallel_mode,
|
|
True) / self.normalized_shape
|
|
# [m/q^2, n, 1]
|
|
var = (input_ - mean).pow(2)
|
|
var = Sum_3D.apply(var, -1, self.depth, self.output_parallel_mode,
|
|
True) / self.normalized_shape
|
|
|
|
output = (input_ - mean) / torch.sqrt(var + self.variance_epsilon)
|
|
output = Mul_3D.apply(output, self.weight, self.depth,
|
|
self.input_parallel_mode,
|
|
self.weight_parallel_mode,
|
|
self.output_parallel_mode)
|
|
output = Add_3D.apply(output, self.bias, self.depth,
|
|
self.input_parallel_mode,
|
|
self.weight_parallel_mode,
|
|
self.output_parallel_mode)
|
|
return output
|
|
|
|
def extra_repr(self):
|
|
return '{}, eps={}'.format(self.normalized_shape,
|
|
self.variance_epsilon)
|
|
|
|
|
|
@LAYERS.register_module
|
|
class Linear3D(nn.Module):
|
|
def __init__(self,
|
|
in_features: int,
|
|
out_features: int,
|
|
input_parallel_mode: ParallelMode,
|
|
weight_parallel_mode: ParallelMode,
|
|
bias: bool = True,
|
|
dtype: dtype = None):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
self.input_parallel_mode = input_parallel_mode
|
|
self.weight_parallel_mode = weight_parallel_mode
|
|
self.output_parallel_mode = get_last_group(self.input_parallel_mode,
|
|
self.weight_parallel_mode)
|
|
self.with_bias = bias
|
|
self.depth = get_depth_from_env()
|
|
self.in_features_per_partition = divide(in_features, self.depth)
|
|
self.out_features_per_partition = divide(out_features, self.depth**2)
|
|
|
|
# [k/q, h/q^2]
|
|
self.weight = Parameter(
|
|
torch.empty(self.in_features_per_partition,
|
|
self.out_features_per_partition,
|
|
device=get_current_device(),
|
|
dtype=dtype))
|
|
|
|
# [h/q^2]
|
|
if bias:
|
|
self.bias = Parameter(
|
|
torch.zeros(self.out_features_per_partition,
|
|
device=get_current_device(),
|
|
dtype=dtype))
|
|
else:
|
|
self.register_parameter('bias', None)
|
|
|
|
self.reset_parameters()
|
|
self._set_tensor_parallel_attributes()
|
|
|
|
def _set_tensor_parallel_attributes(self):
|
|
set_tensor_parallel_attribute(self.weight)
|
|
if self.bias is not None:
|
|
set_tensor_parallel_attribute(self.bias)
|
|
|
|
def groups_for_next_layer(self) -> Tuple[ParallelMode, ParallelMode]:
|
|
return self.output_parallel_mode, self.weight_parallel_mode
|
|
|
|
def reset_parameters(self):
|
|
# setting
|
|
fan_in = self.in_features
|
|
a = math.sqrt(5)
|
|
nonlinearity = 'leaky_relu'
|
|
|
|
# init weight
|
|
std = nn.init.calculate_gain(nonlinearity, a) / math.sqrt(fan_in)
|
|
bound = math.sqrt(3.0) * std
|
|
with seed(ParallelMode.TENSOR):
|
|
nn.init.uniform_(self.weight, -bound, bound)
|
|
|
|
# init bias
|
|
if self.with_bias:
|
|
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
|
|
with seed(ParallelMode.TENSOR):
|
|
nn.init.uniform_(self.bias, -bound, bound)
|
|
|
|
def forward(self, input_: Tensor) -> Tensor:
|
|
# input: [m/q^2, n, k/q]
|
|
# output: [m/q^2, n, h/q]
|
|
output = Matmul_AB_3D.apply(input_, self.weight, self.depth,
|
|
self.input_parallel_mode,
|
|
self.weight_parallel_mode,
|
|
self.output_parallel_mode)
|
|
|
|
if self.with_bias:
|
|
output = Add_3D.apply(output, self.bias, self.depth,
|
|
self.output_parallel_mode,
|
|
self.weight_parallel_mode,
|
|
self.input_parallel_mode)
|
|
return output
|
|
|
|
def extra_repr(self):
|
|
return 'in_features={}, out_features={}, bias={}'.format(
|
|
self.in_features, self.out_features, self.with_bias)
|