mirror of https://github.com/hpcaitech/ColossalAI
67 lines
2.1 KiB
Python
67 lines
2.1 KiB
Python
from contextlib import contextmanager
|
|
from typing import Callable, Iterator, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.nn as nn
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
|
|
from torch.utils.data import DataLoader
|
|
|
|
from .plugin import Plugin
|
|
|
|
__all__ = ['Booster']
|
|
|
|
|
|
class Booster:
|
|
|
|
def __init__(self,
|
|
device: Union[str, torch.device] = 'cuda',
|
|
precision: str = 'fp32',
|
|
grad_clipping_type: str = 'norm',
|
|
grad_clipping_value: float = 0.0,
|
|
plugin: Optional[Plugin] = None) -> None:
|
|
# TODO: implement this method
|
|
pass
|
|
|
|
def boost(
|
|
self, *args: Union[nn.Module, Optimizer, LRScheduler, DataLoader]
|
|
) -> List[Union[nn.Module, Optimizer, LRScheduler, DataLoader]]:
|
|
# TODO: implement this method
|
|
pass
|
|
|
|
def backward(self, loss: torch.Tensor, optimizer: Optimizer) -> None:
|
|
# TODO: implement this method
|
|
pass
|
|
|
|
def execute_pipeline(self,
|
|
data_iter: Iterator,
|
|
model: nn.Module,
|
|
criterion: Callable[[torch.Tensor], torch.Tensor],
|
|
optimizer: Optimizer,
|
|
return_loss: bool = True,
|
|
return_outputs: bool = False) -> Tuple[Optional[torch.Tensor], ...]:
|
|
# TODO: implement this method
|
|
# run pipeline forward backward pass
|
|
# return loss or outputs if needed
|
|
pass
|
|
|
|
def no_sync(self, model: nn.Module) -> contextmanager:
|
|
# TODO: implement this method
|
|
pass
|
|
|
|
def save(self,
|
|
obj: Union[nn.Module, Optimizer, LRScheduler],
|
|
path_like: str,
|
|
plan: str = 'torch',
|
|
**kwargs) -> None:
|
|
# TODO: implement this method
|
|
pass
|
|
|
|
def load(self,
|
|
obj: Union[nn.Module, Optimizer, LRScheduler],
|
|
path_like: str,
|
|
plan: str = 'torch',
|
|
**kwargs) -> None:
|
|
# TODO: implement this method
|
|
pass
|