mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
543 lines
19 KiB
543 lines
19 KiB
import copy
|
|
|
|
import pytest
|
|
import torch
|
|
import torch.distributed as dist
|
|
from torch import nn
|
|
from torch.testing import assert_close
|
|
|
|
import colossalai
|
|
from colossalai.cluster import ProcessGroupMesh
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.nn.optimizer.adafactor import Adafactor
|
|
from colossalai.nn.optimizer.distributed_adafactor import DistributedAdaFactor
|
|
from colossalai.shardformer.layer import Linear1D_Col, Linear1D_Row
|
|
from colossalai.shardformer.layer.utils import Randomizer
|
|
from colossalai.tensor.d_tensor import (
|
|
distribute_tensor,
|
|
get_device_mesh,
|
|
get_layout,
|
|
get_sharding_spec,
|
|
is_distributed_tensor,
|
|
shard_colwise,
|
|
shard_rowwise,
|
|
)
|
|
from colossalai.tensor.d_tensor.api import clear_layout_converter
|
|
from colossalai.tensor.d_tensor.sharding_spec import DimSpec
|
|
from colossalai.testing import parameterize, rerun_if_address_is_in_use, spawn
|
|
from colossalai.utils import set_seed
|
|
from colossalai.zero import LowLevelZeroOptimizer
|
|
from tests.kit.model_zoo import model_zoo
|
|
from tests.test_optimizer._utils import check_dist_optim_state, check_dist_param, check_optim_states
|
|
from tests.test_shardformer.test_model._utils import (
|
|
build_model_from_hybrid_plugin,
|
|
build_model_from_low_level_zero_plugin,
|
|
check_weight,
|
|
run_forward_backward_with_hybrid_plugin,
|
|
run_forward_backward_with_low_level_zero_plugin,
|
|
unwrap_model,
|
|
)
|
|
|
|
HEIGHT = 4
|
|
WIDTH = 4
|
|
_TP_SPEC = DimSpec([0])
|
|
|
|
|
|
def correctness_verify(tensor1: torch.Tensor, tensor2: torch.Tensor, dtype: torch.dtype = torch.float32):
|
|
rtol = None
|
|
atol = None
|
|
if dtype is torch.float32:
|
|
rtol = 5e-04
|
|
atol = 5e-04
|
|
elif dtype is torch.float16:
|
|
rtol = 5e-2
|
|
atol = 5e-4
|
|
elif dtype is torch.bfloat16:
|
|
rtol = 4e-3
|
|
atol = 4e-3
|
|
|
|
assert_close(tensor1, tensor2, rtol=rtol, atol=atol)
|
|
|
|
|
|
# setup param groups; (For zero test optim)
|
|
def setup_param_groups_zero(model: nn.Module) -> list:
|
|
no_decay = ["bias", "LayerNorm.weight"]
|
|
optimizer_grouped_parameters = [
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if not any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.1,
|
|
},
|
|
{
|
|
"params": [p for n, p in model.named_parameters() if any(nd in n for nd in no_decay)],
|
|
"weight_decay": 0.0,
|
|
},
|
|
]
|
|
return optimizer_grouped_parameters
|
|
|
|
|
|
# setup param groups; (For base optim)
|
|
def setup_param_groups(model: nn.Module) -> list:
|
|
optimizer_grouped_parameters = [p for n, p in model.named_parameters()]
|
|
return optimizer_grouped_parameters
|
|
|
|
|
|
# setup flatten param groups, sharding spec and shape; (For dist optim)
|
|
def setup_flatten_param_groups_sharding_spec_shape(model: nn.Module) -> dict:
|
|
flatten_optimizer_grouped_parameters = []
|
|
sharding_spec = {} # {id(flatten param): get_layout(p).global_shape}
|
|
param_shape = {} # {id(flatten param): get_sharding_spec(p)}
|
|
for n, p in model.named_parameters():
|
|
# flatten_p = copy.deepcopy(p).flatten()
|
|
flatten_p = nn.Parameter(p.clone().flatten().requires_grad_(True))
|
|
flatten_optimizer_grouped_parameters.append(flatten_p)
|
|
if is_distributed_tensor(p):
|
|
sharding_spec[id(flatten_p)] = get_sharding_spec(p)
|
|
param_shape[id(flatten_p)] = get_layout(p).global_shape
|
|
else:
|
|
sharding_spec[id(flatten_p)] = None
|
|
param_shape[id(flatten_p)] = p.shape
|
|
return flatten_optimizer_grouped_parameters, sharding_spec, param_shape
|
|
|
|
|
|
def set_dist_grad(
|
|
dist_module: nn.Module, torch_model: nn.Module, g_dtype: torch.dtype, group: dist.ProcessGroup
|
|
) -> None:
|
|
"""
|
|
Set split grads for Tensor Parallel or ZeRO DP.
|
|
We do not need a separate treatment for ZeRO,
|
|
as the wrapper takes care of reduce-scattering grads.
|
|
"""
|
|
rank = dist.get_rank(group)
|
|
world_size = dist.get_world_size(group)
|
|
|
|
for p, torch_p in zip(dist_module.parameters(), torch_model.parameters()):
|
|
if torch_p.grad is None:
|
|
torch_p.grad = torch.zeros_like(torch_p)
|
|
|
|
is_distributed = hasattr(p, "dist_layout")
|
|
if is_distributed:
|
|
sharding = p.dist_layout.sharding_spec.sharding_sequence
|
|
split_dim = sharding.index(_TP_SPEC)
|
|
shape = torch_p.split(world_size, dim=split_dim)[rank].shape
|
|
|
|
indices = torch.arange(shape[split_dim] * rank, shape[split_dim] * (rank + 1))
|
|
# Generate grads only for the correctly split chunk
|
|
torch_p.grad.index_add_(split_dim, indices, torch.randn(shape, device=torch_p.device, dtype=g_dtype))
|
|
|
|
else:
|
|
shape = torch_p.shape
|
|
torch_p.grad += torch.randn(shape, device=torch_p.device, dtype=g_dtype)
|
|
|
|
# avoid inconsistent grad and param dtype error
|
|
orig_p = p.data
|
|
p.data = torch_p.grad.clone().to(g_dtype)
|
|
p.grad = p.data
|
|
p.data = orig_p
|
|
|
|
|
|
def set_master_param_to_shard_param(master_param_list) -> dict:
|
|
master_param_to_shard_param = {id(p): p for p in master_param_list}
|
|
return master_param_to_shard_param
|
|
|
|
|
|
class MlpModel(nn.Module):
|
|
def __init__(self):
|
|
super(MlpModel, self).__init__()
|
|
self.linear1 = nn.Linear(HEIGHT, WIDTH)
|
|
self.linear2 = nn.Linear(WIDTH, HEIGHT)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
class TPModel(nn.Module):
|
|
def __init__(self, linear1, linear2, tp_group=None):
|
|
super().__init__()
|
|
self.linear1 = Linear1D_Col.from_native_module(
|
|
linear1, process_group=tp_group, gather_output=False, overlap=True
|
|
)
|
|
self.linear2 = Linear1D_Row.from_native_module(linear2, process_group=tp_group, parallel_input=True)
|
|
|
|
def forward(self, x):
|
|
x = self.linear1(x)
|
|
x = self.linear2(x)
|
|
return x
|
|
|
|
|
|
@parameterize("dtype", [torch.float32, torch.float16, torch.bfloat16]) # torch.float32, torch.float16, torch.bfloat16
|
|
@parameterize("tp_zero_size", [(4, 1)])
|
|
def exam_dist_adafactor_base(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
|
tp_size, zero_size = tp_zero_size
|
|
local_rank = dist.get_rank()
|
|
use_zero = True if zero_size > 1 else False
|
|
|
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
|
tp_group, dp_group = proc_mesh.get_group_along_axis(0), proc_mesh.get_group_along_axis(1)
|
|
|
|
torch.set_default_dtype(dtype)
|
|
set_seed(42)
|
|
|
|
# ==============================
|
|
# Base Case
|
|
# ==============================
|
|
H, W = HEIGHT, WIDTH
|
|
model_col = nn.Linear(H, W).to(local_rank) # Col parallel weight
|
|
weight, bias = model_col.weight, model_col.bias
|
|
|
|
# ==============================
|
|
# Col Parallel
|
|
# ==============================
|
|
weight_col_shard = shard_colwise(weight.clone(), tp_group)
|
|
weight_col_shard_shard_spec = get_sharding_spec(weight_col_shard) # Shard spec
|
|
weight_col_shard_flatten = nn.Parameter(weight_col_shard.clone().flatten().requires_grad_(True))
|
|
bias_col_flatten = nn.Parameter(bias.clone().flatten().requires_grad_(True))
|
|
|
|
# ==============================
|
|
# Row Parallel
|
|
# ==============================
|
|
weight_row_shard = shard_rowwise(weight.clone(), tp_group)
|
|
weight_row_shard_shard_spec = get_sharding_spec(weight_row_shard) # Shard spec
|
|
weight_row_shard_flatten = nn.Parameter(
|
|
weight_row_shard.clone().flatten().requires_grad_(True)
|
|
) # flatten input(not dtensor) to optimizer
|
|
bias_row_flatten = nn.Parameter(bias.clone().flatten().requires_grad_(True))
|
|
|
|
# ==============================
|
|
# Init Optimizer
|
|
# ==============================
|
|
|
|
# base
|
|
optimizer_base = Adafactor([weight, bias])
|
|
cp_dist_optim = DistributedAdaFactor([weight_col_shard_flatten, bias_col_flatten])
|
|
rp_dist_optim = DistributedAdaFactor([weight_row_shard_flatten, bias_row_flatten])
|
|
|
|
shard_to_param_cp = set_master_param_to_shard_param([weight_col_shard_flatten, bias_col_flatten])
|
|
cp_dist_optim.setup_distributed(
|
|
tp_group=tp_group,
|
|
dp_group=dp_group,
|
|
shard_to_working_param=shard_to_param_cp,
|
|
use_zero=use_zero,
|
|
)
|
|
|
|
shard_to_param_rp = set_master_param_to_shard_param([weight_row_shard_flatten, bias_row_flatten])
|
|
rp_dist_optim.setup_distributed(
|
|
tp_group=tp_group,
|
|
dp_group=dp_group,
|
|
shard_to_working_param=shard_to_param_rp,
|
|
use_zero=use_zero,
|
|
)
|
|
|
|
N_STEPS = 1
|
|
for _ in range(N_STEPS):
|
|
# base step
|
|
optimizer_base.zero_grad()
|
|
weight.grad = torch.rand_like(weight)
|
|
bias.grad = torch.rand_like(bias)
|
|
optimizer_base.step()
|
|
|
|
# col parallel step
|
|
cp_dist_optim.zero_grad()
|
|
weight_col_shard_flatten.grad = (
|
|
distribute_tensor(weight.grad, get_device_mesh(weight_col_shard), weight_col_shard_shard_spec)
|
|
.clone()
|
|
.flatten()
|
|
)
|
|
bias_col_flatten.grad = bias.grad.clone().flatten()
|
|
cp_dist_optim.step()
|
|
|
|
# row parallel step
|
|
rp_dist_optim.zero_grad()
|
|
weight_row_shard_flatten.grad = (
|
|
distribute_tensor(weight.grad, get_device_mesh(weight_row_shard), weight_row_shard_shard_spec)
|
|
.clone()
|
|
.flatten()
|
|
)
|
|
bias_row_flatten.grad = bias.grad.clone().flatten()
|
|
rp_dist_optim.step()
|
|
|
|
weight_row_chunk = weight.t().reshape(-1, W).chunk(tp_size, dim=-1)[dist.get_rank(tp_group)].flatten()
|
|
weight_col_chunk = weight.reshape(-1, H).chunk(tp_size, dim=-1)[dist.get_rank(tp_group)].flatten()
|
|
# verify
|
|
correctness_verify(weight_col_chunk, weight_col_shard_flatten, dtype)
|
|
correctness_verify(weight_row_chunk, weight_row_shard_flatten, dtype)
|
|
|
|
print(f"Base Test Passed")
|
|
|
|
|
|
@parameterize("dtype", [torch.float16]) # torch.float32, torch.float16, torch.bfloat16
|
|
@parameterize("tp_zero_size", [(1, 4)]) # (2, 2), (4, 1), (1, 4)
|
|
def exam_dist_adafactor_zero(dtype: torch.dtype, tp_zero_size: tuple[int, int]):
|
|
tp_size, zero_size = tp_zero_size
|
|
use_zero = True if zero_size > 1 else False
|
|
local_rank = dist.get_rank()
|
|
|
|
clear_layout_converter()
|
|
|
|
proc_mesh = ProcessGroupMesh(tp_size, zero_size)
|
|
tp_group, dp_group = proc_mesh.get_group_along_axis(0), proc_mesh.get_group_along_axis(1)
|
|
|
|
torch.set_default_dtype(dtype)
|
|
set_seed(42)
|
|
|
|
# ==============================
|
|
# Model Init
|
|
# ==============================
|
|
base_model = MlpModel().to(local_rank)
|
|
tp_model = TPModel(copy.deepcopy(base_model.linear1), copy.deepcopy(base_model.linear2), tp_group).to(local_rank)
|
|
|
|
base_param_group = setup_param_groups(base_model)
|
|
tp_param_group = setup_param_groups(tp_model)
|
|
# tp_param_group_, tp_shard_spec, tp_param_shape = setup_flatten_param_groups_sharding_spec_shape(tp_model)
|
|
|
|
# ==============================
|
|
# Optimizer Init
|
|
# ==============================
|
|
base_optim = Adafactor(base_param_group)
|
|
dist_optim = DistributedAdaFactor(tp_param_group)
|
|
|
|
# Setup distributed optimizer
|
|
if zero_size > 1:
|
|
base_optim = LowLevelZeroOptimizer(
|
|
base_optim,
|
|
overlap_communication=True,
|
|
initial_scale=128,
|
|
partition_grad=True,
|
|
dp_process_group=dp_group,
|
|
verbose=True,
|
|
)
|
|
|
|
dist_optim = LowLevelZeroOptimizer(
|
|
dist_optim,
|
|
overlap_communication=True,
|
|
initial_scale=128,
|
|
partition_grad=True,
|
|
dp_process_group=dp_group,
|
|
verbose=True,
|
|
)
|
|
shard_to_param = dist_optim.master_to_working_param # {id(): param tensor} but flattened
|
|
dist_optim.optim.setup_distributed(
|
|
tp_group=tp_group,
|
|
dp_group=dp_group,
|
|
shard_to_working_param=shard_to_param,
|
|
use_zero=use_zero,
|
|
)
|
|
else:
|
|
shard_to_param = set_master_param_to_shard_param(tp_param_group)
|
|
dist_optim.setup_distributed(
|
|
tp_group=tp_group,
|
|
dp_group=dp_group,
|
|
shard_to_working_param=shard_to_param,
|
|
use_zero=use_zero,
|
|
)
|
|
|
|
# ==============================
|
|
# Correctness Verify
|
|
# ==============================
|
|
x = torch.randn(HEIGHT, WIDTH, device=local_rank)
|
|
|
|
out = base_model(x)
|
|
out_tp = tp_model(x)
|
|
|
|
if zero_size > 1:
|
|
dist_optim.backward(out_tp.sum())
|
|
base_optim.backward(out.sum())
|
|
else:
|
|
out_tp.sum().backward()
|
|
out.sum().backward()
|
|
|
|
base_optim.step()
|
|
dist_optim.step()
|
|
|
|
base_optim.zero_grad()
|
|
dist_optim.zero_grad()
|
|
|
|
for p, tp_p in zip(base_param_group, tp_param_group):
|
|
param_is_distributed = is_distributed_tensor(tp_p)
|
|
if param_is_distributed:
|
|
shard_spec = get_sharding_spec(tp_p)
|
|
if len(shard_spec.sharding_sequence) >= 2:
|
|
# Col Parallel
|
|
if shard_spec.sharding_sequence[0] == "R":
|
|
p = p.chunk(tp_size, dim=-1)[dist.get_rank(tp_group)]
|
|
# ROW Parallel
|
|
if shard_spec.sharding_sequence[-1] == "R":
|
|
p = p.chunk(tp_size, dim=0)[dist.get_rank(tp_group)]
|
|
else:
|
|
# TP bias
|
|
p = p.chunk(tp_size, dim=-1)[dist.get_rank(tp_group)]
|
|
|
|
correctness_verify(p, tp_p, dtype)
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
print(f"Zero Test Passed")
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"stage": 1,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
],
|
|
)
|
|
def exam_bert_test_on_lowlevelzero_plugin(test_config):
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
model_list = [
|
|
"transformers_bert",
|
|
]
|
|
clear_layout_converter()
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
if name in model_list:
|
|
(
|
|
org_model,
|
|
org_optimizer,
|
|
sharded_model,
|
|
sharded_optimizer,
|
|
criterion,
|
|
booster,
|
|
) = build_model_from_low_level_zero_plugin(model_fn, loss_fn, test_config, Adafactor, Adafactor)
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_low_level_zero_plugin(
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
)
|
|
|
|
# LowLevelZero not need warp
|
|
# bert = unwrap_model(org_model, "BertModel", "bert")
|
|
# sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
|
|
weight_layer_for_check = [
|
|
"bert.encoder.layer.0.output.dense.weight",
|
|
"bert.encoder.layer.0.output.dense.weight",
|
|
]
|
|
|
|
org_optimizer.step()
|
|
sharded_optimizer.step()
|
|
|
|
# check weights
|
|
if test_config["precision"] == "bf16":
|
|
atol, rtol = 5e-4, 5e-4
|
|
else:
|
|
atol, rtol = 5e-4, 5e-4
|
|
|
|
check_dist_param(org_model, sharded_model, weight_layer_for_check, atol, rtol)
|
|
check_optim_states(org_optimizer, sharded_optimizer.optim)
|
|
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
print(f"Bert Model Zoo Test Passed")
|
|
|
|
|
|
@parameterize(
|
|
"test_config",
|
|
[
|
|
{
|
|
"tp_size": 1,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 4,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 2,
|
|
"precision": "bf16",
|
|
},
|
|
{
|
|
"tp_size": 2,
|
|
"num_microbatches": 4,
|
|
"zero_stage": 1,
|
|
"precision": "bf16",
|
|
},
|
|
# @duanjunwen TODO: fix this test case. Currently params are sharded but are not dtensor here, throwing an error.
|
|
# Probably due to HybridParallelAMPOptimizer replacing some master params ?
|
|
# {
|
|
# "tp_size": 4,
|
|
# "num_microbatches": 4,
|
|
# "zero_stage": 0,
|
|
# "precision": "bf16",
|
|
# },
|
|
],
|
|
)
|
|
def exam_bert_test_on_hybrid_plugin(test_config):
|
|
sub_model_zoo = model_zoo.get_sub_registry("transformers_bert")
|
|
test_config["use_lazy_init"] = False
|
|
test_config["pp_size"] = 1 # Do NOT test Pipeline Parallel
|
|
test_config["initial_scale"] = 2**16 # avoid overflow
|
|
model_list = [
|
|
"transformers_bert",
|
|
]
|
|
clear_layout_converter()
|
|
torch.set_default_dtype(torch.bfloat16)
|
|
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
|
|
if name in model_list:
|
|
(
|
|
org_model,
|
|
org_optimizer,
|
|
sharded_model,
|
|
sharded_optimizer,
|
|
criterion,
|
|
booster,
|
|
) = build_model_from_hybrid_plugin(model_fn, loss_fn, test_config, Adafactor, DistributedAdaFactor)
|
|
|
|
org_loss, org_output, sharded_loss, sharded_output = run_forward_backward_with_hybrid_plugin(
|
|
org_model, sharded_model, sharded_optimizer, data_gen_fn, output_transform_fn, criterion, booster
|
|
)
|
|
|
|
stage_manager = booster.plugin.stage_manager
|
|
tp_group = booster.plugin.tp_group
|
|
|
|
bert = unwrap_model(org_model, "BertModel", "bert")
|
|
sharded_bert = unwrap_model(sharded_model, "BertModel", "bert")
|
|
weight_layer_for_check = ["encoder.layer[0].output.dense", "encoder.layer[1].output.dense"]
|
|
|
|
org_optimizer.step()
|
|
sharded_optimizer.step()
|
|
|
|
# check weights
|
|
if test_config["precision"] == "bf16":
|
|
atol, rtol = 5e-4, 5e-4
|
|
else:
|
|
atol, rtol = 5e-4, 5e-4
|
|
if stage_manager is None or stage_manager.is_first_stage(ignore_chunk=True):
|
|
check_weight(bert, sharded_bert, weight_layer_for_check, tp_group, atol=atol, rtol=rtol, dim=1)
|
|
# check optim states
|
|
check_dist_optim_state(org_optimizer, sharded_optimizer.optim)
|
|
|
|
clear_layout_converter()
|
|
Randomizer.reset_index()
|
|
torch.cuda.empty_cache()
|
|
print(f"Bert Model Zoo Test Passed")
|
|
|
|
|
|
def run_dist(rank, world_size, port):
|
|
disable_existing_loggers()
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
exam_dist_adafactor_base()
|
|
exam_dist_adafactor_zero()
|
|
exam_bert_test_on_lowlevelzero_plugin()
|
|
exam_bert_test_on_hybrid_plugin()
|
|
|
|
|
|
@pytest.mark.dist
|
|
@rerun_if_address_is_in_use()
|
|
def test_dist_adafactor():
|
|
spawn(run_dist, nprocs=4)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_dist_adafactor()
|