Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

235 lines
9.7 KiB

import argparse
import resource
from contextlib import nullcontext
import torch
from torch.distributed.fsdp.fully_sharded_data_parallel import CPUOffload, MixedPrecision
from torch.optim import Adam
from tqdm import tqdm
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from transformers.models.gpt2.modeling_gpt2 import GPT2LMHeadModel
import colossalai
# import colossalai.utils.device as device_utils
from colossalai.booster import Booster
from colossalai.booster.plugin import GeminiPlugin, HybridParallelPlugin, TorchFSDPPlugin
from colossalai.cluster import DistCoordinator
from colossalai.lazy import LazyInitContext
from colossalai.utils import get_current_device
from examples.language.data_utils import RandomDataset
from examples.language.model_utils import format_numel_str, get_model_numel
from examples.language.performance_evaluator import PerformanceEvaluator
# ==============================
# Constants
# ==============================
MODEL_CONFIGS = {
"118M": GPT2Config(activation_function="gelu"),
"338M": GPT2Config(n_embd=1024, n_head=16, n_layer=24, activation_function="gelu"),
"738M": GPT2Config(n_embd=1280, n_head=20, n_layer=36, activation_function="gelu"),
"6.21B": GPT2Config(n_embd=4096, n_head=32, n_layer=32, n_positions=32768, activation_function="gelu"),
}
def main():
# ==============================
# Parse Arguments
# ==============================
parser = argparse.ArgumentParser()
parser.add_argument("-c", "--config", type=str, default="6.21B", help="Model configuration")
parser.add_argument(
"-p",
"--plugin",
choices=["gemini", "gemini_auto", "fsdp", "fsdp_cpu", "3d", "3d_cpu"],
default="gemini",
help="Choose which plugin to use",
)
parser.add_argument("-b", "--batch_size", type=int, default=2, help="Batch size")
parser.add_argument("-s", "--num_steps", type=int, default=200, help="Number of steps to run")
parser.add_argument("-i", "--ignore_steps", type=int, default=3, help="Number of steps to ignore")
parser.add_argument("-g", "--grad_checkpoint", action="store_true", help="Use gradient checkpointing")
parser.add_argument("-l", "--max_length", type=int, default=4096, help="Max sequence length")
parser.add_argument(
"-w", "--warmup_ratio", type=float, default=0.8, help="warm up ratio of non-model data. Only for gemini-auto"
)
parser.add_argument("-m", "--memory_limit", type=int, help="Gemini memory limit in mb")
parser.add_argument("--shard_param_frac", type=float, default=1.0, help="Shard param fraction. Only for gemini")
parser.add_argument("--offload_optim_frac", type=float, default=0.0, help="Offload optim fraction. Only for gemini")
parser.add_argument("--offload_param_frac", type=float, default=0.0, help="Offload param fraction. Only for gemini")
parser.add_argument("--tp", type=int, default=1, help="Tensor parallel size")
parser.add_argument("--extra_dp", type=int, default=1, help="Extra data parallel size, used for Gemini")
parser.add_argument("--pp", type=int, default=1, help="Pipeline parallel size")
parser.add_argument("--sp", type=int, default=1, help="Sequence parallel size")
parser.add_argument("--sp_mode", type=str, default="ring_attn", help="Sequence parallel mode")
parser.add_argument("--mbs", type=int, default=1)
parser.add_argument("--zero", type=int, default=0)
parser.add_argument("--pp_style", type=str, default="1f1b")
parser.add_argument("--num_model_chunks", type=int, default=2)
parser.add_argument("--cpu_offload", action="store_true", help="Use gradient checkpointing")
args = parser.parse_args()
colossalai.launch_from_torch()
coordinator = DistCoordinator()
def empty_init():
pass
# ==============================
# Initialize Booster
# ==============================
use_empty_init = True
if args.plugin == "gemini":
plugin = GeminiPlugin(
precision="bf16",
shard_param_frac=args.shard_param_frac,
offload_optim_frac=args.offload_optim_frac,
offload_param_frac=args.offload_param_frac,
tp_size=args.tp,
extra_dp_size=args.extra_dp,
)
elif args.plugin == "gemini_auto":
plugin = GeminiPlugin(
placement_policy="auto",
precision="bf16",
warmup_non_model_data_ratio=args.warmup_ratio,
tp_size=args.tp,
extra_dp_size=args.extra_dp,
)
elif args.plugin == "fsdp":
if use_empty_init:
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
),
param_init_fn=empty_init(),
)
else:
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
)
)
elif args.plugin == "fsdp_cpu":
if use_empty_init:
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
),
cpu_offload=CPUOffload(offload_params=True),
param_init_fn=empty_init(),
)
else:
plugin = TorchFSDPPlugin(
mixed_precision=MixedPrecision(
param_dtype=torch.float16, reduce_dtype=torch.float16, buffer_dtype=torch.float16
),
cpu_offload=CPUOffload(offload_params=True),
)
elif args.plugin == "3d":
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=args.pp,
pp_style=args.pp_style,
sp_size=args.sp,
sequence_parallelism_mode=args.sp_mode,
enable_sequence_parallelism=True,
zero_stage=args.zero,
num_model_chunks=args.num_model_chunks,
enable_all_optimization=True,
num_microbatches=args.mbs,
cpu_offload=args.cpu_offload,
precision="bf16",
)
elif args.plugin == "3d_cpu":
plugin = HybridParallelPlugin(
tp_size=args.tp,
pp_size=args.pp,
zero_stage=args.zero,
cpu_offload=True,
enable_fused_normalization=torch.cuda.is_available(),
num_microbatches=args.mbs,
initial_scale=2**8,
precision="bf16",
)
else:
raise ValueError(f"Unknown plugin {args.plugin}")
booster = Booster(plugin=plugin)
# ==============================
# Initialize Dataset and Dataloader
# ==============================
dp_size = plugin.dp_size if isinstance(plugin, HybridParallelPlugin) else coordinator.world_size
config = MODEL_CONFIGS[args.config]
dataset = RandomDataset(
num_samples=args.batch_size * args.num_steps * dp_size, max_length=args.max_length, vocab_size=config.vocab_size
)
dataloader = plugin.prepare_dataloader(dataset, batch_size=args.batch_size, shuffle=True, drop_last=True)
# ==============================
# Initialize Model and Optimizer
# ==============================
init_ctx = (
LazyInitContext(default_device=get_current_device())
if isinstance(plugin, (GeminiPlugin, HybridParallelPlugin))
else nullcontext()
)
with init_ctx:
model = GPT2LMHeadModel(config)
if args.grad_checkpoint:
model.gradient_checkpointing_enable()
model_numel = get_model_numel(model)
coordinator.print_on_master(f"Model params: {format_numel_str(model_numel)}")
performance_evaluator = PerformanceEvaluator(
model_numel,
model.config.n_layer,
model.config.n_embd,
model.config.vocab_size,
args.grad_checkpoint,
args.ignore_steps,
dp_world_size=dp_size,
)
optimizer = Adam(model.parameters())
torch.set_default_dtype(torch.bfloat16)
model, optimizer, _, dataloader, _ = booster.boost(model, optimizer, dataloader=dataloader)
torch.set_default_dtype(torch.float)
coordinator.print_on_master(f"Booster init max CUDA memory: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
coordinator.print_on_master(
f"Booster init max CPU memory: {resource.getrusage(resource.RUSAGE_SELF).ru_maxrss/1024:.2f} MB"
)
if isinstance(plugin, HybridParallelPlugin) and args.pp > 1:
data_iter = iter(dataloader)
for step in tqdm(range(len(dataloader)), desc="Step", disable=not coordinator.is_master()):
performance_evaluator.on_step_start(step)
booster.execute_pipeline(
data_iter, model, criterion=lambda outputs, inputs: outputs[0], optimizer=optimizer, return_loss=False
)
optimizer.step()
optimizer.zero_grad()
performance_evaluator.on_step_end(input_ids=torch.empty(args.batch_size, args.max_length))
else:
for step, batch in enumerate(tqdm(dataloader, desc="Step", disable=not coordinator.is_master())):
performance_evaluator.on_step_start(step)
outputs = model(**batch)
loss = outputs[0]
del outputs
booster.backward(loss, optimizer)
optimizer.step()
optimizer.zero_grad()
performance_evaluator.on_step_end(**batch)
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
performance_evaluator.on_fit_end()
coordinator.print_on_master(f"Max CUDA memory usage: {torch.cuda.max_memory_allocated()/1024**2:.2f} MB")
if __name__ == "__main__":
main()