mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
114 lines
3.5 KiB
114 lines
3.5 KiB
import torch |
|
import torch.nn as nn |
|
import torch.optim as optim |
|
from coati.models import convert_to_lora_module |
|
from coati.models.lora import LoraConfig, LoraEmbedding, LoraLinear |
|
from torch.utils.data import DataLoader, TensorDataset |
|
|
|
|
|
class SimpleNN(nn.Module): |
|
def __init__(self, input_size, hidden_size, num_classes): |
|
super(SimpleNN, self).__init__() |
|
self.fc1 = nn.Linear(input_size, hidden_size) |
|
self.relu = nn.ReLU() |
|
self.fc2 = nn.Linear(hidden_size, num_classes) |
|
|
|
def forward(self, x): |
|
out = self.fc1(x) |
|
out = self.relu(out) |
|
out = self.fc2(out) |
|
return out |
|
|
|
|
|
def test_overfit(): |
|
input_size = 1000 |
|
hidden_size = 200 |
|
num_classes = 5 |
|
batch_size = 64 |
|
learning_rate = 0.01 |
|
num_epochs = 200 |
|
|
|
# Synthesized dataset |
|
X = torch.randn(batch_size, input_size) |
|
Y = torch.randint(0, num_classes, (batch_size,)) |
|
|
|
# Convert to DataLoader |
|
dataset = TensorDataset(X, Y) |
|
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True) |
|
|
|
# Build and convert model |
|
model = SimpleNN(input_size, hidden_size, num_classes) |
|
weight_to_compare = model.fc1.weight.detach().clone() |
|
model = convert_to_lora_module(model, lora_config=LoraConfig(r=32)) |
|
|
|
# Loss and optimizer |
|
criterion = nn.CrossEntropyLoss() |
|
optimizer = optim.Adam(model.parameters(), lr=learning_rate) |
|
|
|
# Train the model |
|
for _ in range(num_epochs): |
|
for i, (inputs, labels) in enumerate(loader): |
|
# Forward pass |
|
outputs = model(inputs) |
|
loss = criterion(outputs, labels) |
|
# Backward and optimize |
|
optimizer.zero_grad() |
|
loss.backward() |
|
optimizer.step() |
|
|
|
# Check if model has overfitted |
|
outputs = model(X) |
|
_, predicted = torch.max(outputs.data, 1) |
|
total = labels.size(0) |
|
correct = (predicted == Y).sum().item() |
|
assert correct / total > 0.95 |
|
assert (weight_to_compare - model.fc1.weight).sum() < 0.01 |
|
|
|
|
|
def test_lora_linear_accuracy(): |
|
|
|
weight = torch.randn(10, 5) |
|
linear = nn.Linear(5, 10) |
|
linear.weight.data = weight |
|
x = torch.randn(10, 5) |
|
out_linear = linear(x) |
|
|
|
# lora linear Pissa |
|
linear.weight.data = weight |
|
lora_linear = LoraLinear(linear.weight, linear.bias, r=2, lora_initialization_method="PiSSA") |
|
out_lora = lora_linear(x) |
|
assert torch.allclose(out_linear, out_lora, atol=1e-5, rtol=1e-05) |
|
|
|
# lora linear |
|
linear.weight.data = weight |
|
lora_linear = LoraLinear(linear.weight, linear.bias, r=2) |
|
out_lora = lora_linear(x) |
|
assert torch.allclose(out_linear, out_lora, atol=1e-5, rtol=1e-05) |
|
|
|
|
|
def test_lora_embedding_accuracy(): |
|
weight = torch.randn(10, 5) |
|
embedding = nn.Embedding(10, 5) |
|
embedding.weight.data = weight |
|
x = torch.randint(0, 10, (10,)) |
|
out_embedding = embedding(x) |
|
|
|
# lora embedding Pissa |
|
embedding.weight.data = weight |
|
lora_embedding = LoraEmbedding( |
|
embedding.weight, r=2, lora_initialization_method="PiSSA", num_embeddings=10, embedding_dim=5 |
|
) |
|
out_lora = lora_embedding(x) |
|
assert torch.allclose(out_embedding, out_lora, atol=1e-5, rtol=1e-05) |
|
|
|
# lora embedding |
|
embedding.weight.data = weight |
|
lora_embedding = LoraEmbedding(embedding.weight, r=2, num_embeddings=10, embedding_dim=5) |
|
out_lora = lora_embedding(x) |
|
assert torch.allclose(out_embedding, out_lora, atol=1e-5, rtol=1e-05) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_overfit() |
|
test_lora_linear_accuracy() |
|
test_lora_embedding_accuracy()
|
|
|