Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

114 lines
3.5 KiB

import torch
import torch.nn as nn
import torch.optim as optim
from coati.models import convert_to_lora_module
from coati.models.lora import LoraConfig, LoraEmbedding, LoraLinear
from torch.utils.data import DataLoader, TensorDataset
class SimpleNN(nn.Module):
def __init__(self, input_size, hidden_size, num_classes):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out = self.relu(out)
out = self.fc2(out)
return out
def test_overfit():
input_size = 1000
hidden_size = 200
num_classes = 5
batch_size = 64
learning_rate = 0.01
num_epochs = 200
# Synthesized dataset
X = torch.randn(batch_size, input_size)
Y = torch.randint(0, num_classes, (batch_size,))
# Convert to DataLoader
dataset = TensorDataset(X, Y)
loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# Build and convert model
model = SimpleNN(input_size, hidden_size, num_classes)
weight_to_compare = model.fc1.weight.detach().clone()
model = convert_to_lora_module(model, lora_config=LoraConfig(r=32))
# Loss and optimizer
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=learning_rate)
# Train the model
for _ in range(num_epochs):
for i, (inputs, labels) in enumerate(loader):
# Forward pass
outputs = model(inputs)
loss = criterion(outputs, labels)
# Backward and optimize
optimizer.zero_grad()
loss.backward()
optimizer.step()
# Check if model has overfitted
outputs = model(X)
_, predicted = torch.max(outputs.data, 1)
total = labels.size(0)
correct = (predicted == Y).sum().item()
assert correct / total > 0.95
assert (weight_to_compare - model.fc1.weight).sum() < 0.01
def test_lora_linear_accuracy():
weight = torch.randn(10, 5)
linear = nn.Linear(5, 10)
linear.weight.data = weight
x = torch.randn(10, 5)
out_linear = linear(x)
# lora linear Pissa
linear.weight.data = weight
lora_linear = LoraLinear(linear.weight, linear.bias, r=2, lora_initialization_method="PiSSA")
out_lora = lora_linear(x)
assert torch.allclose(out_linear, out_lora, atol=1e-5, rtol=1e-05)
# lora linear
linear.weight.data = weight
lora_linear = LoraLinear(linear.weight, linear.bias, r=2)
out_lora = lora_linear(x)
assert torch.allclose(out_linear, out_lora, atol=1e-5, rtol=1e-05)
def test_lora_embedding_accuracy():
weight = torch.randn(10, 5)
embedding = nn.Embedding(10, 5)
embedding.weight.data = weight
x = torch.randint(0, 10, (10,))
out_embedding = embedding(x)
# lora embedding Pissa
embedding.weight.data = weight
lora_embedding = LoraEmbedding(
embedding.weight, r=2, lora_initialization_method="PiSSA", num_embeddings=10, embedding_dim=5
)
out_lora = lora_embedding(x)
assert torch.allclose(out_embedding, out_lora, atol=1e-5, rtol=1e-05)
# lora embedding
embedding.weight.data = weight
lora_embedding = LoraEmbedding(embedding.weight, r=2, num_embeddings=10, embedding_dim=5)
out_lora = lora_embedding(x)
assert torch.allclose(out_embedding, out_lora, atol=1e-5, rtol=1e-05)
if __name__ == "__main__":
test_overfit()
test_lora_linear_accuracy()
test_lora_embedding_accuracy()