You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/examples/language/palm/palm_pytorch/autoregressive_wrapper.py

76 lines
2.1 KiB

import torch
import torch.nn.functional as F
from einops import rearrange
from torch import nn
# helper function
def exists(val):
return val is not None
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
# top k filtering
def top_k(logits, thres=0.9):
k = int((1 - thres) * logits.shape[-1])
val, ind = torch.topk(logits, k)
probs = torch.full_like(logits, float("-inf"))
probs.scatter_(1, ind, val)
return probs
class AutoregressiveWrapper(nn.Module):
def __init__(self, net, max_seq_len=2048, pad_value=0):
super().__init__()
self.max_seq_len = max_seq_len
self.pad_value = pad_value
self.net = net
@torch.no_grad()
@eval_decorator
def generate(self, start_tokens, seq_len, eos_token=None, temperature=1.0, filter_thres=0.9, **kwargs):
b, t, device = *start_tokens.shape, start_tokens.device
out = start_tokens
for _ in range(seq_len):
logits = self.net(out, **kwargs)[:, -1, :]
filtered_logits = top_k(logits, thres=filter_thres)
probs = F.softmax(filtered_logits / temperature, dim=-1)
sample = torch.multinomial(probs, 1)
out = torch.cat((out, sample), dim=-1)
if exists(eos_token):
is_eos_token = out == eos_token
if is_eos_token.any(dim=-1).all():
# mask out everything after the eos tokens
shifted_is_eos_tokens = F.pad(is_eos_tokens, (1, -1))
mask = shifted_is_eos_tokens.float().cumsum(dim=-1) >= 1
out = out.masked_fill(mask, self.pad_value)
break
out = out[:, t:]
return out
def forward(self, x, **kwargs):
x_inp, x_labels = x[:, :-1], x[:, 1:]
logits = self.net(x_inp, **kwargs)
return F.cross_entropy(rearrange(logits, "b c n -> b n c"), x_labels)