mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
861 lines
38 KiB
861 lines
38 KiB
import inspect
|
|
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn.functional as F
|
|
from torch.distributed import ProcessGroup
|
|
from torch.nn import CrossEntropyLoss
|
|
from transformers.cache_utils import Cache, DynamicCache
|
|
from transformers.modeling_attn_mask_utils import (
|
|
_prepare_4d_causal_attention_mask,
|
|
_prepare_4d_causal_attention_mask_for_sdpa,
|
|
)
|
|
from transformers.models.mixtral.modeling_mixtral import (
|
|
MixtralSparseMoeBlock,
|
|
MoeCausalLMOutputWithPast,
|
|
MoeModelOutputWithPast,
|
|
apply_rotary_pos_emb,
|
|
load_balancing_loss_func,
|
|
repeat_kv,
|
|
)
|
|
from transformers.utils import is_flash_attn_2_available, logging
|
|
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.moe._operation import (
|
|
DPGradScalerIn,
|
|
DPGradScalerOut,
|
|
EPGradScalerIn,
|
|
EPGradScalerOut,
|
|
all_to_all_uneven,
|
|
)
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.shardformer.layer._operation import (
|
|
all_to_all_comm,
|
|
gather_forward_split_backward,
|
|
split_forward_gather_backward,
|
|
)
|
|
from colossalai.shardformer.layer.linear import Linear1D_Col, Linear1D_Row
|
|
from colossalai.shardformer.shard import ShardConfig
|
|
from colossalai.shardformer.shard.utils import set_tensors_to_none
|
|
from colossalai.tensor.moe_tensor.api import set_moe_tensor_ep_group
|
|
|
|
if is_flash_attn_2_available():
|
|
from flash_attn import flash_attn_func
|
|
|
|
from flash_attn.bert_padding import index_first_axis, pad_input, unpad_input # noqa
|
|
|
|
_flash_supports_window_size = "window_size" in list(inspect.signature(flash_attn_func).parameters)
|
|
|
|
|
|
class EPMixtralSparseMoeBlock(MixtralSparseMoeBlock):
|
|
def __init__(self, *args, **kwargs):
|
|
raise RuntimeError(f"Please use `from_native_module` to create an instance of {self.__class__.__name__}")
|
|
|
|
def setup_process_groups(self, tp_group: ProcessGroup, moe_dp_group: ProcessGroup, ep_group: ProcessGroup):
|
|
assert tp_group is not None
|
|
assert moe_dp_group is not None
|
|
assert ep_group is not None
|
|
|
|
# setup ep group
|
|
self.ep_size = dist.get_world_size(ep_group)
|
|
self.ep_rank = dist.get_rank(ep_group)
|
|
self.ep_group = ep_group
|
|
|
|
if self.num_experts % self.ep_size != 0:
|
|
raise ValueError("The number of experts must be divisible by the number of expert parallel groups.")
|
|
|
|
self.num_experts_per_ep = self.num_experts // self.ep_size
|
|
self.expert_start_idx = self.ep_rank * self.num_experts_per_ep
|
|
held_experts = self.experts[self.expert_start_idx : self.expert_start_idx + self.num_experts_per_ep]
|
|
|
|
set_tensors_to_none(self.experts, exclude=set(held_experts))
|
|
|
|
# setup moe_dp group
|
|
self.moe_dp_group = moe_dp_group
|
|
self.moe_dp_size = moe_dp_group.size()
|
|
|
|
# setup global tp group
|
|
self.tp_group = tp_group
|
|
if self.tp_group.size() > 1:
|
|
for expert in held_experts:
|
|
expert.w1 = Linear1D_Col.from_native_module(expert.w1, self.tp_group)
|
|
expert.w3 = Linear1D_Col.from_native_module(expert.w3, self.tp_group)
|
|
expert.w2 = Linear1D_Row.from_native_module(expert.w2, self.tp_group)
|
|
|
|
for p in self.experts.parameters():
|
|
set_moe_tensor_ep_group(p, ep_group)
|
|
|
|
@staticmethod
|
|
def from_native_module(
|
|
module: MixtralSparseMoeBlock,
|
|
tp_group: ProcessGroup,
|
|
moe_dp_group: ProcessGroup,
|
|
ep_group: ProcessGroup,
|
|
*args,
|
|
**kwargs,
|
|
) -> "EPMixtralSparseMoeBlock":
|
|
# TODO: better init
|
|
LazyInitContext.materialize(module)
|
|
module.__class__ = EPMixtralSparseMoeBlock
|
|
module.setup_process_groups(tp_group, moe_dp_group, ep_group)
|
|
return module
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
batch_size, sequence_length, hidden_dim = hidden_states.shape
|
|
hidden_states = hidden_states.view(-1, hidden_dim)
|
|
# router_logits: (batch * sequence_length, n_experts)
|
|
router_logits = self.gate(hidden_states)
|
|
|
|
routing_weights = F.softmax(router_logits, dim=1, dtype=torch.float)
|
|
routing_weights, selected_experts = torch.topk(routing_weights, self.top_k, dim=-1)
|
|
routing_weights /= routing_weights.sum(dim=-1, keepdim=True)
|
|
# we cast back to the input dtype
|
|
routing_weights = routing_weights.to(hidden_states.dtype)
|
|
|
|
selected_experts = selected_experts.t().reshape(-1)
|
|
selected_experts_idx = selected_experts.argsort()
|
|
dispatch_states = hidden_states.repeat(self.top_k, 1)[selected_experts_idx]
|
|
input_split_sizes = selected_experts.bincount(minlength=self.num_experts)
|
|
|
|
output_split_sizes = torch.zeros_like(input_split_sizes)
|
|
dist.all_to_all_single(output_split_sizes, input_split_sizes, group=self.ep_group)
|
|
|
|
with torch.no_grad():
|
|
activate_experts = output_split_sizes[: self.num_experts_per_ep].clone()
|
|
for i in range(1, self.ep_size):
|
|
activate_experts += output_split_sizes[i * self.num_experts_per_ep : (i + 1) * self.num_experts_per_ep]
|
|
activate_experts = (activate_experts > 0).float()
|
|
dist.all_reduce(activate_experts, group=self.moe_dp_group)
|
|
|
|
input_split_list = input_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
|
|
output_split_list = output_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
|
|
|
|
output_states, _ = all_to_all_uneven(dispatch_states, input_split_list, output_split_list, self.ep_group)
|
|
# compute expert output
|
|
output_states = EPGradScalerIn.apply(output_states, self.ep_size)
|
|
if output_states.size(0) > 0:
|
|
if self.num_experts_per_ep == 1:
|
|
# no need to split
|
|
expert = self.experts[self.expert_start_idx]
|
|
output_states = DPGradScalerIn.apply(output_states, self.moe_dp_size, activate_experts[0])
|
|
output_states = expert.act_fn(expert.w1(output_states)) * expert.w3(output_states)
|
|
output_states = expert.w2(output_states)
|
|
output_states = DPGradScalerOut.apply(output_states, self.moe_dp_size, activate_experts[0])
|
|
else:
|
|
output_states_splits = output_states.split(output_split_sizes.tolist())
|
|
output_states_list = []
|
|
for i, split_states in enumerate(output_states_splits):
|
|
if split_states.size(0) == 0:
|
|
continue
|
|
expert = self.experts[self.expert_start_idx + i % self.num_experts_per_ep]
|
|
split_states = DPGradScalerIn.apply(
|
|
split_states, self.moe_dp_size, activate_experts[i % self.num_experts_per_ep]
|
|
)
|
|
split_states = expert.act_fn(expert.w1(split_states)) * expert.w3(split_states)
|
|
split_states = expert.w2(split_states)
|
|
split_states = DPGradScalerOut.apply(
|
|
split_states, self.moe_dp_size, activate_experts[i % self.num_experts_per_ep]
|
|
)
|
|
output_states_list.append(split_states)
|
|
output_states = torch.cat(output_states_list)
|
|
|
|
output_states = EPGradScalerOut.apply(output_states, self.ep_size)
|
|
dispatch_states, _ = all_to_all_uneven(output_states, output_split_list, input_split_list, self.ep_group)
|
|
|
|
recover_experts_idx = torch.empty_like(selected_experts_idx)
|
|
recover_experts_idx[selected_experts_idx] = torch.arange(
|
|
selected_experts_idx.size(0), device=selected_experts_idx.device
|
|
)
|
|
dispatch_states = dispatch_states[recover_experts_idx]
|
|
k_hidden_states = dispatch_states.chunk(self.top_k)
|
|
output_states = k_hidden_states[0] * routing_weights[:, 0, None]
|
|
for i in range(1, self.top_k):
|
|
output_states += k_hidden_states[i] * routing_weights[:, i, None]
|
|
output_states = output_states.reshape(batch_size, sequence_length, hidden_dim)
|
|
return output_states, router_logits
|
|
|
|
|
|
class MixtralPipelineForwards:
|
|
"""
|
|
This class serves as a micro library for forward function substitution of Mixtral models
|
|
under pipeline setting.
|
|
"""
|
|
|
|
@staticmethod
|
|
def mixtral_model_forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_router_logits: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
past_router_logits: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
|
|
>>> model = MixtralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_router_logits = (
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
)
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if stage_manager.is_first_stage():
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
input_shape = hidden_states.shape[:-1]
|
|
batch_size, seq_length = input_shape
|
|
device = hidden_states.device
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
if use_cache:
|
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
|
use_cache = False
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if position_ids is None:
|
|
position_ids = torch.arange(
|
|
past_key_values_length,
|
|
seq_length + past_key_values_length,
|
|
dtype=torch.long,
|
|
device=device,
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
# embed positions, for the first stage, hidden_states is the input embeddings,
|
|
# for the other stages, hidden_states is the output of the previous stage
|
|
if is_flash_attn_2_available():
|
|
# 2d mask is passed through the layers
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
hidden_states,
|
|
past_key_values_length,
|
|
sliding_window=self.config.sliding_window,
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
all_router_logits = () if output_router_logits else None
|
|
next_decoder_cache = None
|
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
|
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
# None for past_key_value
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(decoder_layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
None,
|
|
output_attentions,
|
|
output_router_logits,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_value,
|
|
output_attentions,
|
|
output_router_logits,
|
|
use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = (layer_outputs[2 if output_attentions else 1],)
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
if output_router_logits:
|
|
all_router_logits += (layer_outputs[-1],)
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if output_router_logits and past_router_logits is not None:
|
|
all_router_logits = past_router_logits + all_router_logits
|
|
if stage_manager.is_last_stage():
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
|
if v is not None
|
|
)
|
|
return MoeModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
router_logits=all_router_logits,
|
|
)
|
|
else:
|
|
if output_router_logits:
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
"past_router_logits": all_router_logits,
|
|
}
|
|
else:
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
}
|
|
|
|
@staticmethod
|
|
def mixtral_for_causal_lm_forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_router_logits: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
past_router_logits: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
|
|
>>> model = MixtralForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_router_logits = (
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
)
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = MixtralPipelineForwards.mixtral_model_forward(
|
|
self.model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
output_router_logits=output_router_logits,
|
|
return_dict=return_dict,
|
|
stage_manager=stage_manager,
|
|
hidden_states=hidden_states,
|
|
stage_index=stage_index,
|
|
past_router_logits=past_router_logits,
|
|
)
|
|
past_key_values = None
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
aux_loss = None
|
|
if output_router_logits:
|
|
aux_loss = load_balancing_loss_func(outputs[-1], self.num_experts, self.num_experts_per_tok)
|
|
if labels is not None:
|
|
loss += self.router_aux_loss_coef * aux_loss
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
if output_router_logits:
|
|
output = (aux_loss,) + output
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return MoeCausalLMOutputWithPast(
|
|
loss=loss,
|
|
aux_loss=aux_loss,
|
|
logits=logits,
|
|
past_key_values=None,
|
|
hidden_states=outputs[0],
|
|
attentions=None,
|
|
router_logits=outputs[-1],
|
|
)
|
|
else:
|
|
out = {}
|
|
hidden_states = outputs.get("hidden_states")
|
|
out["hidden_states"] = hidden_states
|
|
if output_router_logits:
|
|
out["past_router_logits"] = outputs["past_router_logits"]
|
|
return out
|
|
|
|
|
|
def get_mixtral_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
|
logger = logging.get_logger(__name__)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Cache]]:
|
|
if sp_mode is not None:
|
|
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode"
|
|
assert (sp_size is not None) and (
|
|
sp_group is not None
|
|
), "Must specify sp_size and sp_group for sequence parallel"
|
|
|
|
if "padding_mask" in kwargs:
|
|
warnings.warn(
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
)
|
|
|
|
# overwrite attention_mask with padding_mask
|
|
attention_mask = kwargs.pop("padding_mask")
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
# sp: modify sp_len when sequence parallel mode is ring
|
|
if sp_mode in ["split_gather", "ring"]:
|
|
q_len *= sp_size
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
if sp_mode == "all_to_all":
|
|
query_states = all_to_all_comm(query_states, sp_group)
|
|
key_states = all_to_all_comm(key_states, sp_group)
|
|
value_states = all_to_all_comm(value_states, sp_group)
|
|
bsz, q_len, _ = query_states.size()
|
|
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
if self.layer_idx is None:
|
|
raise ValueError(
|
|
f"The cache structure has changed since version v4.36. If you are using {self.__class__.__name__} "
|
|
"for auto-regressive decoding with k/v caching, please make sure to initialize the attention class "
|
|
"with a layer index."
|
|
)
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
|
|
# Because the input can be padded, the absolute sequence length depends on the max position id.
|
|
rotary_seq_len = max(kv_seq_len, position_ids[:, -1].max().item()) + 1
|
|
cos, sin = self.rotary_emb(value_states, seq_len=rotary_seq_len)
|
|
|
|
query_states, key_states = apply_rotary_pos_emb(query_states, key_states, cos, sin, position_ids)
|
|
|
|
use_sliding_windows = (
|
|
_flash_supports_window_size
|
|
and getattr(self.config, "sliding_window", None) is not None
|
|
and kv_seq_len > self.config.sliding_window
|
|
)
|
|
if not _flash_supports_window_size:
|
|
logger.warning_once(
|
|
"The current flash attention version does not support sliding window attention, for a more memory efficient implementation"
|
|
" make sure to upgrade flash-attn library."
|
|
)
|
|
if past_key_value is not None:
|
|
# Activate slicing cache only if the config has a value `sliding_windows` attribute
|
|
cache_has_contents = past_key_value.get_seq_length(self.layer_idx) > 0
|
|
if (
|
|
getattr(self.config, "sliding_window", None) is not None
|
|
and kv_seq_len > self.config.sliding_window
|
|
and cache_has_contents
|
|
):
|
|
slicing_tokens = 1 - self.config.sliding_window
|
|
|
|
past_key = past_key_value[self.layer_idx][0]
|
|
past_value = past_key_value[self.layer_idx][1]
|
|
|
|
past_key = past_key[:, :, slicing_tokens:, :].contiguous()
|
|
past_value = past_value[:, :, slicing_tokens:, :].contiguous()
|
|
|
|
if past_key.shape[-2] != self.config.sliding_window - 1:
|
|
raise ValueError(
|
|
f"past key must have a shape of (`batch_size, num_heads, self.config.sliding_window-1, head_dim`), got"
|
|
f" {past_key.shape}"
|
|
)
|
|
|
|
if attention_mask is not None:
|
|
attention_mask = attention_mask[:, slicing_tokens:]
|
|
attention_mask = torch.cat([attention_mask, torch.ones_like(attention_mask[:, -1:])], dim=-1)
|
|
|
|
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
# repeat k/v heads if n_kv_heads < n_heads
|
|
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
|
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
|
dropout_rate = 0.0 if not self.training else self.attention_dropout
|
|
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in float16 just to be sure everything works as expected.
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
if torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
# Handle the case where the model is quantized
|
|
elif hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
else:
|
|
target_dtype = self.q_proj.weight.dtype
|
|
|
|
logger.warning_once(
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
|
f" {target_dtype}."
|
|
)
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
# Reashape to the expected shape for Flash Attention
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
attn_output = self._flash_attention_forward(
|
|
query_states,
|
|
key_states,
|
|
value_states,
|
|
attention_mask,
|
|
q_len,
|
|
dropout=dropout_rate,
|
|
use_sliding_windows=use_sliding_windows,
|
|
)
|
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
if sp_mode == "all_to_all":
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous() # (1, 8, 128)
|
|
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2) # (1, 4, 256)
|
|
else:
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
return forward
|
|
|
|
|
|
def get_mixtral_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
|
logger = logging.get_logger(__name__)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
output_router_logits: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, MoeModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_router_logits = (
|
|
output_router_logits if output_router_logits is not None else self.config.output_router_logits
|
|
)
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
|
|
past_key_values_length = 0
|
|
|
|
if (self.gradient_checkpointing or sp_mode in ["ring", "all_to_all"]) and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
if use_cache:
|
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
|
if use_legacy_cache:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if attention_mask is not None and self._attn_implementation == "flash_attention_2" and use_cache:
|
|
is_padding_right = attention_mask[:, -1].sum().item() != batch_size
|
|
if is_padding_right:
|
|
raise ValueError(
|
|
"You are attempting to perform batched generation with padding_side='right'"
|
|
" this may lead to unexpected behaviour for Flash Attention version of Mixtral. Make sure to "
|
|
" call `tokenizer.padding_side = 'left'` before tokenizing the input. "
|
|
)
|
|
if self._attn_implementation == "flash_attention_2":
|
|
# 2d mask is passed through the layers
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
elif self._attn_implementation == "sdpa" and not output_attentions:
|
|
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
|
# the manual implementation that requires a 4D causal mask in all cases.
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
)
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
sliding_window=self.config.sliding_window,
|
|
)
|
|
|
|
if sp_mode in ["ring", "split_gather"]:
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
|
|
elif sp_mode == "all_to_all":
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
|
|
hidden_states = inputs_embeds
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
all_router_logits = () if output_router_logits else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
output_router_logits,
|
|
use_cache,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
output_router_logits=output_router_logits,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
if output_router_logits:
|
|
all_router_logits += (layer_outputs[-1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
if sp_mode == "ring" or sp_mode == "split_gather":
|
|
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
|
|
elif sp_mode == "all_to_all":
|
|
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = None
|
|
if use_cache:
|
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
|
|
|
if not return_dict:
|
|
return tuple(
|
|
v
|
|
for v in [hidden_states, next_cache, all_hidden_states, all_self_attns, all_router_logits]
|
|
if v is not None
|
|
)
|
|
return MoeModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
router_logits=all_router_logits,
|
|
)
|
|
|
|
return forward
|