mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
755 lines
33 KiB
755 lines
33 KiB
import warnings
|
|
from typing import List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
from torch.distributed import ProcessGroup
|
|
from torch.nn import CrossEntropyLoss
|
|
from transformers.cache_utils import Cache, DynamicCache
|
|
from transformers.modeling_attn_mask_utils import (
|
|
_prepare_4d_causal_attention_mask,
|
|
_prepare_4d_causal_attention_mask_for_sdpa,
|
|
)
|
|
from transformers.modeling_outputs import BaseModelOutputWithPast, CausalLMOutputWithPast
|
|
from transformers.models.llama.modeling_llama import apply_rotary_pos_emb
|
|
from transformers.utils import is_flash_attn_2_available, logging
|
|
|
|
from colossalai.lazy import LazyInitContext
|
|
from colossalai.moe._operation import (
|
|
DPGradScalerIn,
|
|
DPGradScalerOut,
|
|
EPGradScalerIn,
|
|
EPGradScalerOut,
|
|
all_to_all_uneven,
|
|
)
|
|
from colossalai.pipeline.stage_manager import PipelineStageManager
|
|
from colossalai.shardformer.layer._operation import (
|
|
all_to_all_comm,
|
|
gather_forward_split_backward,
|
|
split_forward_gather_backward,
|
|
)
|
|
from colossalai.shardformer.layer.linear import Linear1D_Col, Linear1D_Row
|
|
from colossalai.shardformer.shard import ShardConfig
|
|
from colossalai.shardformer.shard.utils import set_tensors_to_none
|
|
from colossalai.tensor.moe_tensor.api import set_moe_tensor_ep_group
|
|
|
|
|
|
# copied from modeling_deepseek.py
|
|
class AddAuxiliaryLoss(torch.autograd.Function):
|
|
"""
|
|
The trick function of adding auxiliary (aux) loss,
|
|
which includes the gradient of the aux loss during backpropagation.
|
|
"""
|
|
|
|
@staticmethod
|
|
def forward(ctx, x, loss):
|
|
assert loss.numel() == 1
|
|
ctx.dtype = loss.dtype
|
|
ctx.required_aux_loss = loss.requires_grad
|
|
return x
|
|
|
|
@staticmethod
|
|
def backward(ctx, grad_output):
|
|
grad_loss = None
|
|
if ctx.required_aux_loss:
|
|
grad_loss = torch.ones(1, dtype=ctx.dtype, device=grad_output.device)
|
|
return grad_output, grad_loss
|
|
|
|
|
|
class EPDeepseekMoE(nn.Module):
|
|
def __init__(self):
|
|
raise RuntimeError(f"Please use `from_native_module` to create an instance of {self.__class__.__name__}")
|
|
|
|
def setup_process_groups(self, tp_group: ProcessGroup, moe_dp_group: ProcessGroup, ep_group: ProcessGroup):
|
|
assert tp_group is not None
|
|
assert moe_dp_group is not None
|
|
assert ep_group is not None
|
|
|
|
self.ep_size = dist.get_world_size(ep_group)
|
|
self.ep_rank = dist.get_rank(ep_group)
|
|
self.num_experts = self.config.n_routed_experts
|
|
assert self.num_experts % self.ep_size == 0
|
|
|
|
self.ep_group = ep_group
|
|
self.num_experts_per_ep = self.num_experts // self.ep_size
|
|
self.expert_start_idx = self.ep_rank * self.num_experts_per_ep
|
|
held_experts = self.experts[self.expert_start_idx : self.expert_start_idx + self.num_experts_per_ep]
|
|
|
|
set_tensors_to_none(self.experts, exclude=set(held_experts))
|
|
|
|
# setup moe_dp group
|
|
self.moe_dp_group = moe_dp_group
|
|
self.moe_dp_size = moe_dp_group.size()
|
|
|
|
# setup tp group
|
|
self.tp_group = tp_group
|
|
if self.tp_group.size() > 1:
|
|
for expert in held_experts:
|
|
expert.gate_proj = Linear1D_Col.from_native_module(expert.gate_proj, self.tp_group)
|
|
expert.up_proj = Linear1D_Col.from_native_module(expert.up_proj, self.tp_group)
|
|
expert.down_proj = Linear1D_Row.from_native_module(expert.down_proj, self.tp_group)
|
|
|
|
for p in self.experts.parameters():
|
|
set_moe_tensor_ep_group(p, ep_group)
|
|
|
|
@staticmethod
|
|
def from_native_module(
|
|
module,
|
|
tp_group: ProcessGroup,
|
|
moe_dp_group: ProcessGroup,
|
|
ep_group: ProcessGroup,
|
|
*args,
|
|
**kwargs,
|
|
) -> "EPDeepseekMoE":
|
|
LazyInitContext.materialize(module)
|
|
if module.__class__.__name__ == "DeepseekMLP":
|
|
return module
|
|
module.__class__ = EPDeepseekMoE
|
|
module.setup_process_groups(tp_group, moe_dp_group, ep_group)
|
|
return module
|
|
|
|
def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
|
|
identity = hidden_states
|
|
orig_shape = hidden_states.shape
|
|
|
|
topk_experts_idx, topk_experts_weight, aux_loss = self.gate(hidden_states)
|
|
|
|
hidden_states = hidden_states.view(-1, hidden_states.shape[-1]) # [t0, t1, t2 ...]
|
|
hidden_states = hidden_states.repeat_interleave(
|
|
self.num_experts_per_tok, dim=0
|
|
) # after repeat_interleave: [t0 t0 t1 t1 t2 t2 ... ]
|
|
|
|
flat_topk_experts_idx = topk_experts_idx.view(-1) # [e0 e1 e2 ...]
|
|
# The elements of flat_topk_token_idx are token ids, which are arranged in ascending order of expert ids.
|
|
flat_topk_token_idx = flat_topk_experts_idx.argsort()
|
|
|
|
# Now we adjust the order of the hidden states, also in ascending order of expert id
|
|
dispatch_states = hidden_states[flat_topk_token_idx]
|
|
input_split_sizes = flat_topk_experts_idx.bincount(minlength=self.num_experts) # [n0, n1, n2, n3]
|
|
output_split_sizes = torch.zeros_like(input_split_sizes)
|
|
|
|
# [n0, n1, n2, n3] [m0, m1, m2, m3] -> [n0, n1, m0, m1] [n2, n3, m2, m3]
|
|
dist.all_to_all_single(output_split_sizes, input_split_sizes, group=self.ep_group)
|
|
|
|
with torch.no_grad():
|
|
activate_experts = output_split_sizes[: self.num_experts_per_ep].clone()
|
|
for i in range(1, self.ep_size):
|
|
activate_experts += output_split_sizes[i * self.num_experts_per_ep : (i + 1) * self.num_experts_per_ep]
|
|
activate_experts = (activate_experts > 0).float()
|
|
dist.all_reduce(activate_experts, group=self.moe_dp_group)
|
|
|
|
input_split_list = input_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
|
|
output_split_list = output_split_sizes.view(self.ep_size, self.num_experts_per_ep).sum(dim=-1).tolist()
|
|
output_states, _ = all_to_all_uneven(dispatch_states, input_split_list, output_split_list, self.ep_group)
|
|
output_states = EPGradScalerIn.apply(output_states, self.ep_size)
|
|
|
|
if output_states.size(0) > 0:
|
|
if self.num_experts_per_ep == 1:
|
|
expert = self.experts[self.expert_start_idx]
|
|
output_states = DPGradScalerIn.apply(output_states, self.moe_dp_size, activate_experts[0])
|
|
output_states = expert(output_states)
|
|
output_states = DPGradScalerOut.apply(output_states, self.moe_dp_size, activate_experts[0])
|
|
else:
|
|
output_states_splits = output_states.split(output_split_sizes.tolist())
|
|
output_states_list = []
|
|
for i, split_states in enumerate(output_states_splits):
|
|
if split_states.size(0) == 0: # no token routed to this experts
|
|
continue
|
|
expert = self.experts[self.expert_start_idx + i % self.num_experts_per_ep]
|
|
split_states = DPGradScalerIn.apply(
|
|
split_states, self.moe_dp_size, activate_experts[i % self.num_experts_per_ep]
|
|
)
|
|
split_states = expert(split_states)
|
|
split_states = DPGradScalerOut.apply(
|
|
split_states, self.moe_dp_size, activate_experts[i % self.num_experts_per_ep]
|
|
)
|
|
output_states_list.append(split_states)
|
|
output_states = torch.cat(output_states_list)
|
|
output_states = EPGradScalerOut.apply(output_states, self.ep_size)
|
|
dispatch_states, _ = all_to_all_uneven(output_states, output_split_list, input_split_list, self.ep_group)
|
|
recover_token_idx = torch.empty_like(flat_topk_token_idx)
|
|
recover_token_idx[flat_topk_token_idx] = torch.arange(
|
|
flat_topk_token_idx.size(0), device=flat_topk_token_idx.device
|
|
)
|
|
|
|
output_hidden_states = dispatch_states[recover_token_idx] # t0 t0 t1 t1 t2 t2
|
|
output_hidden_states = output_hidden_states.view(-1, self.num_experts_per_tok, orig_shape[-1])
|
|
output_hidden_states = (output_hidden_states * topk_experts_weight[:, :, None]).sum(dim=-2) # (B*S, h)
|
|
output_hidden_states = output_hidden_states.view(*orig_shape)
|
|
output_hidden_states = AddAuxiliaryLoss.apply(output_hidden_states, aux_loss)
|
|
if self.config.n_shared_experts is not None:
|
|
output_hidden_states = output_hidden_states + self.shared_experts(identity)
|
|
return output_hidden_states
|
|
|
|
|
|
class DeepseekPipelineForwards:
|
|
"""
|
|
This class serves as a micro library for forward function substitution of Llama models
|
|
under pipeline setting.
|
|
"""
|
|
|
|
@staticmethod
|
|
def deepseek_model_forward(
|
|
self: "DeepseekModel",
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, AutoModelForCausalLM
|
|
|
|
>>> model = AutoModelForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if stage_manager.is_first_stage():
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both decoder_input_ids and decoder_inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length, _ = inputs_embeds.shape
|
|
else:
|
|
raise ValueError("You have to specify either decoder_input_ids or decoder_inputs_embeds")
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
hidden_states = inputs_embeds
|
|
else:
|
|
input_shape = hidden_states.shape[:-1]
|
|
batch_size, seq_length = input_shape
|
|
device = hidden_states.device
|
|
|
|
seq_length_with_past = seq_length
|
|
past_key_values_length = 0
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
if use_cache:
|
|
logger.warning_once("use_cache=True is not supported for pipeline models at the moment.")
|
|
use_cache = False
|
|
|
|
if past_key_values is not None:
|
|
past_key_values_length = past_key_values[0][0].shape[2]
|
|
seq_length_with_past = seq_length_with_past + past_key_values_length
|
|
|
|
if position_ids is None:
|
|
position_ids = torch.arange(
|
|
past_key_values_length,
|
|
seq_length + past_key_values_length,
|
|
dtype=torch.long,
|
|
device=device,
|
|
)
|
|
position_ids = position_ids.unsqueeze(0).view(-1, seq_length)
|
|
else:
|
|
position_ids = position_ids.view(-1, seq_length).long()
|
|
|
|
# embed positions, for the first stage, hidden_states is the input embeddings,
|
|
# for the other stages, hidden_states is the output of the previous stage
|
|
if is_flash_attn_2_available():
|
|
# 2d mask is passed through the layers
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
hidden_states,
|
|
past_key_values_length,
|
|
sliding_window=self.config.sliding_window,
|
|
)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`..."
|
|
)
|
|
use_cache = False
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
start_idx, end_idx = stage_index[0], stage_index[1]
|
|
for idx, decoder_layer in enumerate(self.layers[start_idx:end_idx], start=start_idx):
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
past_key_value = past_key_values[idx] if past_key_values is not None else None
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
|
|
def create_custom_forward(module):
|
|
def custom_forward(*inputs):
|
|
# None for past_key_value
|
|
return module(*inputs)
|
|
|
|
return custom_forward
|
|
|
|
layer_outputs = torch.utils.checkpoint.checkpoint(
|
|
create_custom_forward(decoder_layer),
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
None,
|
|
output_attentions,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_value,
|
|
output_attentions,
|
|
use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = (layer_outputs[2 if output_attentions else 1],)
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
next_cache = next_decoder_cache if use_cache else None
|
|
|
|
if stage_manager.is_last_stage():
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
# always return dict for imediate stage
|
|
return {
|
|
"hidden_states": hidden_states,
|
|
}
|
|
|
|
@staticmethod
|
|
def deepseek_for_causal_lm_forward(
|
|
self: "DeepseekForCausalLM",
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
labels: Optional[torch.LongTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
stage_manager: Optional[PipelineStageManager] = None,
|
|
hidden_states: Optional[torch.FloatTensor] = None,
|
|
stage_index: Optional[List[int]] = None,
|
|
shard_config: ShardConfig = None,
|
|
):
|
|
r"""
|
|
Args:
|
|
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
|
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
|
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
|
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
|
|
|
Returns:
|
|
|
|
Example:
|
|
|
|
```python
|
|
>>> from transformers import AutoTokenizer, MixtralForCausalLM
|
|
|
|
>>> model = DeepseekForCausalLM.from_pretrained(PATH_TO_CONVERTED_WEIGHTS)
|
|
>>> tokenizer = AutoTokenizer.from_pretrained(PATH_TO_CONVERTED_TOKENIZER)
|
|
|
|
>>> prompt = "Hey, are you conscious? Can you talk to me?"
|
|
>>> inputs = tokenizer(prompt, return_tensors="pt")
|
|
|
|
>>> # Generate
|
|
>>> generate_ids = model.generate(inputs.input_ids, max_length=30)
|
|
>>> tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
|
|
"Hey, are you conscious? Can you talk to me?\nI'm not conscious, but I can talk to you."
|
|
```"""
|
|
logger = logging.get_logger(__name__)
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# TODO(jianghai): left the recording kv-value tensors as () or None type, this feature may be added in the future.
|
|
if output_attentions:
|
|
logger.warning_once("output_attentions=True is not supported for pipeline models at the moment.")
|
|
output_attentions = False
|
|
if output_hidden_states:
|
|
logger.warning_once("output_hidden_states=True is not supported for pipeline models at the moment.")
|
|
output_hidden_states = False
|
|
|
|
# decoder outputs consists of (dec_features, layer_state, dec_hidden, dec_attn)
|
|
outputs = DeepseekPipelineForwards.deepseek_model_forward(
|
|
self.model,
|
|
input_ids=input_ids,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_values=past_key_values,
|
|
inputs_embeds=inputs_embeds,
|
|
use_cache=use_cache,
|
|
output_attentions=output_attentions,
|
|
output_hidden_states=output_hidden_states,
|
|
return_dict=return_dict,
|
|
stage_manager=stage_manager,
|
|
hidden_states=hidden_states,
|
|
stage_index=stage_index,
|
|
)
|
|
past_key_values = None
|
|
|
|
if stage_manager.is_last_stage():
|
|
hidden_states = outputs[0]
|
|
logits = self.lm_head(hidden_states)
|
|
logits = logits.float()
|
|
|
|
loss = None
|
|
if labels is not None:
|
|
# Shift so that tokens < n predict n
|
|
shift_logits = logits[..., :-1, :].contiguous()
|
|
shift_labels = labels[..., 1:].contiguous()
|
|
# Flatten the tokens
|
|
loss_fct = CrossEntropyLoss()
|
|
shift_logits = shift_logits.view(-1, self.config.vocab_size)
|
|
shift_labels = shift_labels.view(-1)
|
|
# Enable model parallelism
|
|
shift_labels = shift_labels.to(shift_logits.device)
|
|
loss = loss_fct(shift_logits, shift_labels)
|
|
|
|
if not return_dict:
|
|
output = (logits,) + outputs[1:]
|
|
return (loss,) + output if loss is not None else output
|
|
|
|
return CausalLMOutputWithPast(
|
|
loss=loss,
|
|
logits=logits,
|
|
past_key_values=None,
|
|
hidden_states=outputs[0],
|
|
attentions=None,
|
|
)
|
|
else:
|
|
out = {}
|
|
hidden_states = outputs.get("hidden_states")
|
|
out["hidden_states"] = hidden_states
|
|
return out
|
|
|
|
|
|
def get_deepseek_flash_attention_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
|
logger = logging.get_logger(__name__)
|
|
|
|
def forward(
|
|
self,
|
|
hidden_states: torch.Tensor,
|
|
attention_mask: Optional[torch.LongTensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_value: Optional[Cache] = None,
|
|
output_attentions: bool = False,
|
|
use_cache: bool = False,
|
|
**kwargs,
|
|
) -> Tuple[torch.Tensor, Optional[torch.Tensor], Optional[Tuple[torch.Tensor]]]:
|
|
if sp_mode is not None:
|
|
assert sp_mode in ["all_to_all", "split_gather", "ring"], "Invalid sp_mode"
|
|
assert (sp_size is not None) and (
|
|
sp_group is not None
|
|
), "Must specify sp_size and sp_group for sequence parallel"
|
|
|
|
# DeepseekFlashAttention2 attention does not support output_attentions
|
|
if "padding_mask" in kwargs:
|
|
warnings.warn(
|
|
"Passing `padding_mask` is deprecated and will be removed in v4.37. Please make sure use `attention_mask` instead.`"
|
|
)
|
|
|
|
# overwrite attention_mask with padding_mask
|
|
attention_mask = kwargs.pop("padding_mask")
|
|
|
|
output_attentions = False
|
|
|
|
bsz, q_len, _ = hidden_states.size()
|
|
|
|
# sp: modify sp_len when sequence parallel mode is ring
|
|
if sp_mode in ["split_gather", "ring"]:
|
|
q_len *= sp_size
|
|
|
|
query_states = self.q_proj(hidden_states)
|
|
key_states = self.k_proj(hidden_states)
|
|
value_states = self.v_proj(hidden_states)
|
|
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
if sp_mode == "all_to_all":
|
|
query_states = all_to_all_comm(query_states, sp_group)
|
|
key_states = all_to_all_comm(key_states, sp_group)
|
|
value_states = all_to_all_comm(value_states, sp_group)
|
|
bsz, q_len, _ = query_states.size()
|
|
# Flash attention requires the input to have the shape
|
|
# batch_size x seq_length x head_dim x hidden_dim
|
|
# therefore we just need to keep the original shape
|
|
query_states = query_states.view(bsz, q_len, self.num_heads, self.head_dim).transpose(1, 2)
|
|
key_states = key_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
value_states = value_states.view(bsz, q_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
|
|
|
kv_seq_len = key_states.shape[-2]
|
|
if past_key_value is not None:
|
|
kv_seq_len += past_key_value.get_usable_length(kv_seq_len, self.layer_idx)
|
|
cos, sin = self.rotary_emb(value_states, seq_len=kv_seq_len)
|
|
query_states, key_states = apply_rotary_pos_emb(
|
|
query_states, key_states, cos, sin, position_ids, unsqueeze_dim=0
|
|
)
|
|
|
|
if past_key_value is not None:
|
|
cache_kwargs = {"sin": sin, "cos": cos} # Specific to RoPE models
|
|
key_states, value_states = past_key_value.update(key_states, value_states, self.layer_idx, cache_kwargs)
|
|
|
|
# TODO: These transpose are quite inefficient but Flash Attention requires the layout [batch_size, sequence_length, num_heads, head_dim]. We would need to refactor the KV cache
|
|
# to be able to avoid many of these transpose/reshape/view.
|
|
query_states = query_states.transpose(1, 2)
|
|
key_states = key_states.transpose(1, 2)
|
|
value_states = value_states.transpose(1, 2)
|
|
dropout_rate = self.attention_dropout if self.training else 0.0
|
|
|
|
# In PEFT, usually we cast the layer norms in float32 for training stability reasons
|
|
# therefore the input hidden states gets silently casted in float32. Hence, we need
|
|
# cast them back in the correct dtype just to be sure everything works as expected.
|
|
# This might slowdown training & inference so it is recommended to not cast the LayerNorms
|
|
# in fp32. (DeepseekRMSNorm handles it correctly)
|
|
|
|
input_dtype = query_states.dtype
|
|
if input_dtype == torch.float32:
|
|
# Handle the case where the model is quantized
|
|
if hasattr(self.config, "_pre_quantization_dtype"):
|
|
target_dtype = self.config._pre_quantization_dtype
|
|
elif torch.is_autocast_enabled():
|
|
target_dtype = torch.get_autocast_gpu_dtype()
|
|
else:
|
|
target_dtype = self.q_proj.weight.dtype
|
|
|
|
logger.warning_once(
|
|
f"The input hidden states seems to be silently casted in float32, this might be related to"
|
|
f" the fact you have upcasted embedding or layer norm layers in float32. We will cast back the input in"
|
|
f" {target_dtype}."
|
|
)
|
|
|
|
query_states = query_states.to(target_dtype)
|
|
key_states = key_states.to(target_dtype)
|
|
value_states = value_states.to(target_dtype)
|
|
attn_output = self._flash_attention_forward(
|
|
query_states, key_states, value_states, attention_mask, q_len, dropout=dropout_rate
|
|
)
|
|
# sp: all-to-all comminucation when introducing sequence parallel
|
|
if sp_mode == "all_to_all":
|
|
attn_output = attn_output.reshape(bsz, q_len, self.num_heads * self.head_dim).contiguous() # (1, 8, 128)
|
|
attn_output = all_to_all_comm(attn_output, sp_group, scatter_dim=1, gather_dim=2) # (1, 4, 256)
|
|
else:
|
|
attn_output = attn_output.reshape(bsz, q_len, self.hidden_size)
|
|
|
|
attn_output = self.o_proj(attn_output)
|
|
|
|
if not output_attentions:
|
|
attn_weights = None
|
|
|
|
return attn_output, attn_weights, past_key_value
|
|
|
|
return forward
|
|
|
|
|
|
def get_deepseek_flash_attention_model_forward(shard_config, sp_mode=None, sp_size=None, sp_group=None):
|
|
logger = logging.get_logger(__name__)
|
|
|
|
def forward(
|
|
self,
|
|
input_ids: torch.LongTensor = None,
|
|
attention_mask: Optional[torch.Tensor] = None,
|
|
position_ids: Optional[torch.LongTensor] = None,
|
|
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
|
inputs_embeds: Optional[torch.FloatTensor] = None,
|
|
use_cache: Optional[bool] = None,
|
|
output_attentions: Optional[bool] = None,
|
|
output_hidden_states: Optional[bool] = None,
|
|
return_dict: Optional[bool] = None,
|
|
) -> Union[Tuple, BaseModelOutputWithPast]:
|
|
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
|
output_hidden_states = (
|
|
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
|
)
|
|
use_cache = use_cache if use_cache is not None else self.config.use_cache
|
|
|
|
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
|
|
|
# retrieve input_ids and inputs_embeds
|
|
if input_ids is not None and inputs_embeds is not None:
|
|
raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
|
|
elif input_ids is not None:
|
|
batch_size, seq_length = input_ids.shape[:2]
|
|
elif inputs_embeds is not None:
|
|
batch_size, seq_length = inputs_embeds.shape[:2]
|
|
else:
|
|
raise ValueError("You have to specify either input_ids or inputs_embeds")
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
if use_cache:
|
|
logger.warning_once(
|
|
"`use_cache=True` is incompatible with gradient checkpointing. Setting `use_cache=False`transformers."
|
|
)
|
|
use_cache = False
|
|
|
|
past_key_values_length = 0
|
|
if use_cache:
|
|
use_legacy_cache = not isinstance(past_key_values, Cache)
|
|
if use_legacy_cache:
|
|
past_key_values = DynamicCache.from_legacy_cache(past_key_values)
|
|
past_key_values_length = past_key_values.get_usable_length(seq_length)
|
|
|
|
if position_ids is None:
|
|
device = input_ids.device if input_ids is not None else inputs_embeds.device
|
|
position_ids = torch.arange(
|
|
past_key_values_length, seq_length + past_key_values_length, dtype=torch.long, device=device
|
|
)
|
|
position_ids = position_ids.unsqueeze(0)
|
|
|
|
if inputs_embeds is None:
|
|
inputs_embeds = self.embed_tokens(input_ids)
|
|
|
|
if self._use_flash_attention_2:
|
|
# 2d mask is passed through the layers
|
|
attention_mask = attention_mask if (attention_mask is not None and 0 in attention_mask) else None
|
|
elif self._use_sdpa and not output_attentions:
|
|
# output_attentions=True can not be supported when using SDPA, and we fall back on
|
|
# the manual implementation that requires a 4D causal mask in all cases.
|
|
attention_mask = _prepare_4d_causal_attention_mask_for_sdpa(
|
|
attention_mask,
|
|
(batch_size, seq_length),
|
|
inputs_embeds,
|
|
past_key_values_length,
|
|
)
|
|
else:
|
|
# 4d mask is passed through the layers
|
|
attention_mask = _prepare_4d_causal_attention_mask(
|
|
attention_mask, (batch_size, seq_length), inputs_embeds, past_key_values_length
|
|
)
|
|
|
|
if sp_mode in ["ring", "split_gather"]:
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group)
|
|
elif sp_mode == "all_to_all":
|
|
inputs_embeds = split_forward_gather_backward(inputs_embeds, 1, sp_group, 1 / sp_size)
|
|
# embed positions
|
|
hidden_states = inputs_embeds
|
|
|
|
# decoder layers
|
|
all_hidden_states = () if output_hidden_states else None
|
|
all_self_attns = () if output_attentions else None
|
|
next_decoder_cache = None
|
|
|
|
for decoder_layer in self.layers:
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
if self.gradient_checkpointing and self.training:
|
|
layer_outputs = self._gradient_checkpointing_func(
|
|
decoder_layer.__call__,
|
|
hidden_states,
|
|
attention_mask,
|
|
position_ids,
|
|
past_key_values,
|
|
output_attentions,
|
|
use_cache,
|
|
)
|
|
else:
|
|
layer_outputs = decoder_layer(
|
|
hidden_states,
|
|
attention_mask=attention_mask,
|
|
position_ids=position_ids,
|
|
past_key_value=past_key_values,
|
|
output_attentions=output_attentions,
|
|
use_cache=use_cache,
|
|
)
|
|
|
|
hidden_states = layer_outputs[0]
|
|
|
|
if use_cache:
|
|
next_decoder_cache = layer_outputs[2 if output_attentions else 1]
|
|
|
|
if output_attentions:
|
|
all_self_attns += (layer_outputs[1],)
|
|
|
|
hidden_states = self.norm(hidden_states)
|
|
|
|
if sp_mode == "ring" or sp_mode == "split_gather":
|
|
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group)
|
|
elif sp_mode == "all_to_all":
|
|
hidden_states = gather_forward_split_backward(hidden_states, 1, sp_group, grad_scale=sp_size)
|
|
|
|
# add hidden states from the last decoder layer
|
|
if output_hidden_states:
|
|
all_hidden_states += (hidden_states,)
|
|
|
|
next_cache = None
|
|
if use_cache:
|
|
next_cache = next_decoder_cache.to_legacy_cache() if use_legacy_cache else next_decoder_cache
|
|
if not return_dict:
|
|
return tuple(v for v in [hidden_states, next_cache, all_hidden_states, all_self_attns] if v is not None)
|
|
return BaseModelOutputWithPast(
|
|
last_hidden_state=hidden_states,
|
|
past_key_values=next_cache,
|
|
hidden_states=all_hidden_states,
|
|
attentions=all_self_attns,
|
|
)
|
|
|
|
return forward
|