mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
98 lines
3.1 KiB
98 lines
3.1 KiB
import pytest |
|
import torch |
|
import torch.distributed as dist |
|
|
|
import colossalai |
|
from colossalai.accelerator import get_accelerator |
|
from colossalai.moe import SparseMLP |
|
from colossalai.moe.manager import MOE_MANAGER |
|
from colossalai.testing import rerun_if_address_is_in_use, spawn |
|
|
|
BATCH_SIZE = 4 |
|
NUM_EXPERTS = 4 |
|
|
|
|
|
def check_equal(tensor_a, tensor_b, atol=1e-06): |
|
assert torch.allclose(tensor_a, tensor_b, rtol=0, atol=atol) is True |
|
|
|
|
|
def run_routing(rank, world_size, port, rs=2, hidden_size=128, data_type=torch.float32, topk=1): |
|
# Here we do not need TF32, since it brings absolute error on results |
|
torch.backends.cuda.matmul.allow_tf32 = False |
|
|
|
colossalai.launch(rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl") |
|
local_rank = dist.get_rank() |
|
|
|
MOE_MANAGER.setup(parallel="EP") # MOE environment initialization |
|
MOE_MANAGER.reset_loss() |
|
torch.manual_seed(rs + local_rank) # set each process has different random seed |
|
|
|
# get randomized data |
|
tokens = torch.randn( |
|
BATCH_SIZE, hidden_size, dtype=data_type, device=get_accelerator().get_current_device(), requires_grad=True |
|
) |
|
|
|
layer = SparseMLP( |
|
hidden_size=hidden_size, |
|
intermediate_size=hidden_size * 2, |
|
num_experts=NUM_EXPERTS, |
|
router_top_k=topk, |
|
router_capacity_factor_train=1.0, |
|
) |
|
layer = layer.to(get_accelerator().get_current_device()) |
|
if data_type == torch.float16: |
|
layer = layer.half() |
|
|
|
# use matrix multiplication instead of COL_MOE_KERNEL in MOE dispatch and combine |
|
layer.enable_kernel = False |
|
old_out = layer(tokens) |
|
ech = old_out.shape |
|
grad = torch.randn(ech, device=get_accelerator().get_current_device()) |
|
old_out.backward(grad) # get gradient |
|
|
|
# save all results |
|
o_tk_grad = tokens.grad.data.clone() |
|
o_gt_grad = layer.gate_weight.grad.data.clone() |
|
|
|
# reset all gradients |
|
tokens.grad.zero_() |
|
layer.gate_weight.grad.zero_() |
|
|
|
layer.enable_kernel = True |
|
new_out = layer(tokens) # get outputs through colossal kernel |
|
|
|
if data_type == torch.float32: |
|
check_equal(old_out, new_out) |
|
else: |
|
check_equal(old_out, new_out, 1e-2) |
|
# forward function passed |
|
|
|
new_out.backward(grad) # get new type gradient |
|
n_tk_grad = tokens.grad.data.clone() |
|
n_gt_grad = layer.gate_weight.grad.data.clone() |
|
|
|
if data_type == torch.float32: |
|
check_equal(o_tk_grad, n_tk_grad) |
|
else: |
|
check_equal(o_tk_grad, o_tk_grad, 1e-2) |
|
# tokens gradient is correct |
|
|
|
if data_type == torch.float32: |
|
check_equal(o_gt_grad, n_gt_grad, 5e-05) |
|
else: |
|
check_equal(o_gt_grad, n_gt_grad, 2e-01) |
|
# bias gradient is correct |
|
|
|
|
|
@pytest.mark.dist |
|
@pytest.mark.parametrize("rs", [131]) |
|
@pytest.mark.parametrize("hidden_size", [32, 144]) |
|
@pytest.mark.parametrize("data_type", [torch.float32, torch.float16]) |
|
@pytest.mark.parametrize("topk", [1, 2]) |
|
@rerun_if_address_is_in_use() |
|
def test_moe_kernel(rs, hidden_size, data_type, topk): |
|
spawn(run_routing, 4, rs=rs, hidden_size=hidden_size, data_type=data_type, topk=topk) |
|
|
|
|
|
if __name__ == "__main__": |
|
test_moe_kernel(2, 256, torch.float16, 2)
|
|
|