ColossalAI/applications/ColossalQA/colossalqa/chain/memory/summary.py

104 lines
3.7 KiB
Python

"""
Custom SummarizerMixin base class and ConversationSummaryMemory class
Modified from Original Source
This code is based on LangChain Ai's langchain, which can be found at
https://github.com/langchain-ai/langchain
The original code is licensed under the MIT license.
"""
from __future__ import annotations
from typing import Any, Dict, List, Type
from langchain.chains.llm import LLMChain
from langchain.memory.chat_memory import BaseChatMemory
from langchain.memory.prompt import SUMMARY_PROMPT
from langchain.pydantic_v1 import BaseModel, root_validator
from langchain.schema import BaseChatMessageHistory, BasePromptTemplate
from langchain.schema.language_model import BaseLanguageModel
from langchain.schema.messages import BaseMessage, SystemMessage, get_buffer_string
class SummarizerMixin(BaseModel):
"""
Mixin for summarizer.
"""
human_prefix: str = "Human"
ai_prefix: str = "Assistant"
llm: BaseLanguageModel
prompt: BasePromptTemplate = SUMMARY_PROMPT
summary_message_cls: Type[BaseMessage] = SystemMessage
llm_kwargs: Dict = {}
def predict_new_summary(self, messages: List[BaseMessage], existing_summary: str, stop: List = []) -> str:
"""
Recursively summarize a conversation by generating a new summary using
the last round of conversation and the existing summary.
"""
new_lines = get_buffer_string(
messages,
human_prefix=self.human_prefix,
ai_prefix=self.ai_prefix,
)
chain = LLMChain(llm=self.llm, prompt=self.prompt, llm_kwargs=self.llm_kwargs)
return chain.predict(summary=existing_summary, new_lines=new_lines, stop=stop)
class ConversationSummaryMemory(BaseChatMemory, SummarizerMixin):
"""Conversation summarizer to chat memory."""
buffer: str = ""
memory_key: str = "history"
@classmethod
def from_messages(
cls,
llm: BaseLanguageModel,
chat_memory: BaseChatMessageHistory,
summarize_step: int = 2,
**kwargs: Any,
) -> ConversationSummaryMemory:
obj = cls(llm=llm, chat_memory=chat_memory, **kwargs)
for i in range(0, len(obj.chat_memory.messages), summarize_step):
obj.buffer = obj.predict_new_summary(obj.chat_memory.messages[i : i + summarize_step], obj.buffer)
return obj
@property
def memory_variables(self) -> List[str]:
"""Will always return list of memory variables."""
return [self.memory_key]
def load_memory_variables(self, inputs: Dict[str, Any]) -> Dict[str, Any]:
"""Return history buffer."""
if self.return_messages:
buffer: Any = [self.summary_message_cls(content=self.buffer)]
else:
buffer = self.buffer
return {self.memory_key: buffer}
@root_validator()
def validate_prompt_input_variables(cls, values: Dict) -> Dict:
"""Validate that prompt input variables are consistent."""
prompt_variables = values["prompt"].input_variables
expected_keys = {"summary", "new_lines"}
if expected_keys != set(prompt_variables):
raise ValueError(
"Got unexpected prompt input variables. The prompt expects "
f"{prompt_variables}, but it should have {expected_keys}."
)
return values
def save_context(self, inputs: Dict[str, Any], outputs: Dict[str, str]) -> None:
"""Save context from this conversation to buffer."""
super().save_context(inputs, outputs)
self.buffer = self.predict_new_summary(self.chat_memory.messages[-2:], self.buffer)
def clear(self) -> None:
"""Clear memory contents."""
super().clear()
self.buffer = ""