mirror of https://github.com/hpcaitech/ColossalAI
153b957a1b
* refactor: adapt boost API in base and naive strategies * fix: initialize plugin after setup_distributed * fix: fix save_pretrained fn * refactor: adapt boost API in DDPStrategy * to: add _post_init check * to: fix ddp backward, modify ddp dataloader and unwrap * feat: adapt boost API in ColossalAIStrategy * fix: call setup_distributed before use get_current_device * fix: fix save_model and save_optimizer * test: remove save_sharded_optimizer test * style: apply formatter * fix: fix stage check and add comments * feat: allow dict type arg in strategy.prepare * to: temporarily remove lr_scheduler for testing * style: simplify init of ColossalAIStrategy * fix: fix lr_scheduler in sft and rm * style: modify comments * test: add train_prompts tests * fix: fix inference only case and use in train_prompts * test: skip failed tests in ci * style: fix CodeFactor check * fix: do not use model.to('cpu') with GeminiPlugin * test: enable colossalai_gemini tests * test: set CUDA_VISIBLE_DEVICES in ci * docs: add note |
||
---|---|---|
.. | ||
ray | ||
README.md | ||
benchmark_opt_lora_dummy.py |
README.md
Benchmarks
Benchmark OPT with LoRA on dummy prompt data
We provide various OPT models (string in parentheses is the corresponding model name used in this script):
- OPT-125M (125m)
- OPT-350M (350m)
- OPT-700M (700m)
- OPT-1.3B (1.3b)
- OPT-2.7B (2.7b)
- OPT-3.5B (3.5b)
- OPT-5.5B (5.5b)
- OPT-6.7B (6.7b)
- OPT-10B (10b)
- OPT-13B (13b)
We also provide various training strategies:
- ddp: torch DDP
- colossalai_gemini: ColossalAI GeminiDDP with
placement_policy="cuda"
, like zero3 - colossalai_gemini_cpu: ColossalAI GeminiDDP with
placement_policy="cpu"
, like zero3-offload - colossalai_zero2: ColossalAI zero2
- colossalai_zero2_cpu: ColossalAI zero2-offload
- colossalai_zero1: ColossalAI zero1
- colossalai_zero1_cpu: ColossalAI zero1-offload
We only support torchrun
to launch now. E.g.
# run OPT-125M with no lora (lora_rank=0) on single-node single-GPU with min batch size
torchrun --standalone --nproc_per_node 1 benchmark_opt_lora_dummy.py --model 125m --critic_model 125m --strategy ddp --experience_batch_size 1 --train_batch_size 1 --lora_rank 0
# run Actor (OPT-1.3B) and Critic (OPT-350M) with lora_rank=4 on single-node 4-GPU
torchrun --standalone --nproc_per_node 4 benchmark_opt_lora_dummy.py --model 1.3b --critic_model 350m --strategy colossalai_zero2 --lora_rank 4