mirror of https://github.com/hpcaitech/ColossalAI
105 lines
3.0 KiB
Python
105 lines
3.0 KiB
Python
from colossalai.utils.memory_tracer.model_data_memtracer import GLOBAL_MODEL_DATA_TRACER
|
|
from colossalai.utils.memory_utils.memory_monitor import colo_cuda_memory_used
|
|
from colossalai.utils import get_current_device
|
|
|
|
import torch
|
|
from typing import Tuple
|
|
|
|
|
|
class SamplingCounter:
|
|
|
|
def __init__(self) -> None:
|
|
self._samplint_cnt = 0
|
|
|
|
def advance(self):
|
|
self._samplint_cnt += 1
|
|
|
|
@property
|
|
def sampling_cnt(self):
|
|
return self._samplint_cnt
|
|
|
|
def reset(self):
|
|
self._samplint_cnt = 0
|
|
|
|
|
|
class MemStatsCollector:
|
|
|
|
def __init__(self) -> None:
|
|
"""
|
|
Collecting Memory Statistics.
|
|
It has two phases.
|
|
1. Collection Phase: collect memory usage statistics
|
|
2. Runtime Phase: do not collect statistics.
|
|
"""
|
|
self._sampling_cnter = SamplingCounter()
|
|
self._model_data_cuda = []
|
|
self._overall_cuda = []
|
|
|
|
# TODO(jiaruifang) Now no cpu mem stats collecting
|
|
self._model_data_cpu = []
|
|
self._overall_cpu = []
|
|
|
|
self._start_flag = False
|
|
|
|
@property
|
|
def overall_cuda(self):
|
|
return self._overall_cuda
|
|
|
|
@property
|
|
def model_data_cuda_GB(self):
|
|
return [elem / 1e9 for elem in self._model_data_cuda]
|
|
|
|
@property
|
|
def model_data_cuda(self):
|
|
return self._model_data_cuda
|
|
|
|
@property
|
|
def non_model_data_cuda_GB(self):
|
|
return [elem / 1e9 for elem in self.non_model_data_cuda]
|
|
|
|
@property
|
|
def non_model_data_cuda(self):
|
|
"""Non model data stats
|
|
"""
|
|
return [(v1 - v2) for v1, v2 in zip(self._overall_cuda, self._model_data_cuda)]
|
|
|
|
def start_collection(self):
|
|
self._start_flag = True
|
|
|
|
def finish_collection(self):
|
|
self._start_flag = False
|
|
|
|
def sample_memstats(self) -> None:
|
|
"""
|
|
Sampling memory statistics.
|
|
Record the current model data CUDA memory usage as well as system CUDA memory usage.
|
|
"""
|
|
if self._start_flag:
|
|
sampling_cnt = self._sampling_cnter.sampling_cnt
|
|
assert sampling_cnt == len(self._overall_cuda)
|
|
self._model_data_cuda.append(GLOBAL_MODEL_DATA_TRACER.cuda_usage)
|
|
self._overall_cuda.append(colo_cuda_memory_used(torch.device(f'cuda:{get_current_device()}')))
|
|
self._sampling_cnter.advance()
|
|
|
|
def fetch_memstats(self) -> Tuple[int, int]:
|
|
"""
|
|
returns cuda usage of model data and overall cuda usage.
|
|
"""
|
|
sampling_cnt = self._sampling_cnter.sampling_cnt
|
|
if len(self._model_data_cuda) < sampling_cnt:
|
|
raise RuntimeError
|
|
return (self._model_data_cuda[sampling_cnt], self._overall_cuda[sampling_cnt])
|
|
|
|
def reset_sampling_cnter(self) -> None:
|
|
self._sampling_cnter.reset()
|
|
|
|
def clear(self) -> None:
|
|
self._model_data_cuda = []
|
|
self._overall_cuda = []
|
|
|
|
self._model_data_cpu = []
|
|
self._overall_cpu = []
|
|
|
|
self._start_flag = False
|
|
self._sampling_cnter.reset()
|