mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
81 lines
2.8 KiB
81 lines
2.8 KiB
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import pprint
|
|
from functools import partial
|
|
|
|
import colossalai.nn as col_nn
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
import torch.nn as nn
|
|
from colossalai.context.parallel_mode import ParallelMode
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.initialize import launch
|
|
from colossalai.logging import disable_existing_loggers
|
|
from colossalai.utils import free_port, get_current_device, is_using_pp
|
|
from colossalai.utils.checkpointing import gather_pipeline_parallel_state_dict, load_checkpoint, save_checkpoint
|
|
from colossalai.testing import rerun_on_exception, skip_if_not_enough_gpus
|
|
|
|
|
|
def build_pipeline(model):
|
|
from colossalai.pipeline.utils import partition_uniform
|
|
|
|
pipeline_size = gpc.get_world_size(ParallelMode.PIPELINE)
|
|
pipeline_rank = gpc.get_local_rank(ParallelMode.PIPELINE)
|
|
depth = len(model)
|
|
start, end = partition_uniform(depth, pipeline_size, 1)[pipeline_rank][0]
|
|
layers = []
|
|
for i in range(depth):
|
|
if start <= i < end:
|
|
layers.append(model[i])
|
|
else:
|
|
layers.append(nn.Identity())
|
|
return nn.Sequential(*tuple(layers))
|
|
|
|
|
|
def check_equal(A, B):
|
|
assert torch.allclose(A, B, rtol=1e-3, atol=1e-2)
|
|
|
|
|
|
def check_checkpoint_2p5d(rank, world_size, port):
|
|
config = dict(parallel=dict(pipeline=dict(size=2), tensor=dict(size=4, depth=1, mode="2.5d")),)
|
|
|
|
disable_existing_loggers()
|
|
launch(config=config, rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
|
|
|
|
m1 = nn.Sequential(nn.Linear(4, 8), nn.Linear(8, 4))
|
|
sd1 = m1.state_dict()
|
|
if gpc.get_global_rank() == 0:
|
|
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd1)}\n")
|
|
save_checkpoint("test.pt", 0, m1)
|
|
|
|
m2 = nn.Sequential(col_nn.Linear(4, 8), col_nn.Linear(8, 4))
|
|
if is_using_pp():
|
|
m2 = build_pipeline(m2)
|
|
|
|
load_checkpoint("test.pt", m2)
|
|
sd2 = m2.state_dict()
|
|
if is_using_pp() and gpc.get_local_rank(ParallelMode.TENSOR) == 0:
|
|
sd2 = gather_pipeline_parallel_state_dict(sd2)
|
|
print(f"Rank {gpc.get_global_rank()}:\n{pprint.pformat(sd2)}\n")
|
|
|
|
if gpc.get_global_rank() == 0:
|
|
for k, v in sd1.items():
|
|
assert k in sd2
|
|
check_equal(v, sd2[k].to(torch.device("cpu")))
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.skip("takes too long")
|
|
@skip_if_not_enough_gpus(min_gpus=8)
|
|
@rerun_on_exception(exception_type=mp.ProcessRaisedException, pattern=".*Address already in use.*")
|
|
def test_checkpoint_2p5d():
|
|
world_size = 8
|
|
run_func = partial(check_checkpoint_2p5d, world_size=world_size, port=free_port())
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
test_checkpoint_2p5d()
|