mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
96 lines
2.5 KiB
96 lines
2.5 KiB
from colossalai.gemini.paramhooks import BaseParamHookMgr
|
|
from torch import nn
|
|
import torch
|
|
import torch.nn.functional as F
|
|
import copy
|
|
|
|
|
|
class SubNet(nn.Module):
|
|
|
|
def __init__(self, out_features) -> None:
|
|
super().__init__()
|
|
self.bias = nn.Parameter(torch.zeros(out_features))
|
|
|
|
def forward(self, x, weight):
|
|
return F.linear(x, weight, self.bias)
|
|
|
|
|
|
class Net(nn.Module):
|
|
|
|
def __init__(self, checkpoint=False) -> None:
|
|
super().__init__()
|
|
self.fc1 = nn.Linear(5, 5)
|
|
self.sub_fc = SubNet(5)
|
|
self.fc2 = nn.Linear(5, 1)
|
|
|
|
def forward(self, x):
|
|
x = self.fc1(x)
|
|
x = self.sub_fc(x, self.fc1.weight)
|
|
x = self.fc1(x)
|
|
x = self.fc2(x)
|
|
return x
|
|
|
|
|
|
def net_data():
|
|
return (torch.randn(2, 5, dtype=torch.float, device='cuda'),)
|
|
|
|
|
|
def allclose(tensor_a: torch.Tensor, tensor_b: torch.Tensor, loose=False) -> bool:
|
|
if loose:
|
|
return torch.allclose(tensor_a, tensor_b, atol=1e-3, rtol=1e-3)
|
|
return torch.allclose(tensor_a, tensor_b)
|
|
|
|
|
|
def test_base_param_hook():
|
|
torch.manual_seed(0)
|
|
model = Net(checkpoint=True).cuda()
|
|
model.train()
|
|
inputs = net_data()
|
|
|
|
def run_model(model, inputs, use_param_hook=False):
|
|
if use_param_hook:
|
|
|
|
class HooKWrapper:
|
|
|
|
def __init__(self) -> None:
|
|
self.hook_triggered_times = 0
|
|
|
|
def wrapper_func(self):
|
|
|
|
def hook(param, grad) -> torch.Tensor or None:
|
|
self.hook_triggered_times += 1
|
|
return grad
|
|
|
|
return hook
|
|
|
|
hookwrapper = HooKWrapper()
|
|
param_list = [p for p in model.parameters()]
|
|
hook_mgr = BaseParamHookMgr(param_list)
|
|
hook_mgr.register_backward_hooks(hookwrapper.wrapper_func())
|
|
|
|
model.zero_grad(set_to_none=True)
|
|
|
|
with torch.cuda.amp.autocast():
|
|
y = model(*inputs)
|
|
loss = y.sum()
|
|
loss.backward()
|
|
|
|
if use_param_hook:
|
|
hook_mgr.remove_hooks()
|
|
return hookwrapper.hook_triggered_times
|
|
|
|
model_copy = copy.deepcopy(model)
|
|
|
|
run_model(model, inputs, False)
|
|
ret2 = run_model(model_copy, inputs, True)
|
|
|
|
# Make sure param hook has only be fired once in case of parameter sharing
|
|
assert ret2 == len(list(model.parameters()))
|
|
|
|
for p, p_copy in zip(model.parameters(), model_copy.parameters()):
|
|
assert allclose(p.grad, p_copy.grad), f"{p.grad} vs {p_copy.grad}"
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_base_param_hook()
|