You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/nn/layer/parallel_2d/layers.py

259 lines
9.3 KiB

import math
import torch
import torch.distributed as dist
from torch import Tensor
from torch.nn import Parameter, init as init
from colossalai.context import seed, ParallelMode
from colossalai.core import global_context as gpc
from colossalai.registry import LAYERS
from colossalai.utils import get_current_device
from ._operation import Matmul_AB_2D, Add_Bias_2D, _LayerNorm_2D
from ._utils import get_summa_dim_from_env, assert_summa_initialization
from .._common_utils import divide, set_tensor_parallel_attribute
from ..base_layer import ParallelLayer
@LAYERS.register_module
class Linear2D(ParallelLayer):
""" Linear layer for 2D parallelism
:param in_features: size of each input sample
:type in_features: int
:param out_features: size of each output sample
:type out_features: int
:param bias: If set to ``False``, the layer will not learn an additive bias, defaults to True
:type bias: bool, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
:param skip_bias_add: If set to ``True``, it will skip bias add for linear layer, which is preserved for kernel fusion, defaults to False
:type skip_bias_add: bool, optional
"""
def __init__(self,
in_features: int,
out_features: int,
bias: bool = True,
dtype=None,
skip_bias_add: bool = False
):
super().__init__()
self.in_features = in_features
self.out_features = out_features
self.skip_bias_add = skip_bias_add
# parallel settings
assert_summa_initialization()
self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
self.summa_dim = get_summa_dim_from_env()
# partitioning dimension
self.input_size_per_partition = divide(
self.in_features, self.summa_dim)
self.hidden_size_per_partition = divide(
self.out_features, self.summa_dim)
# create weight, shape: [k/q, h/q]
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
self.weight = Parameter(torch.empty(
self.input_size_per_partition,
self.hidden_size_per_partition,
**factory_kwargs))
# create bias, shape: [h/q]
if bias:
self.bias = Parameter(torch.empty(
self.hidden_size_per_partition,
**factory_kwargs))
else:
self.register_parameter('bias', None)
# initialize parameters
self.reset_parameters()
self._set_tensor_parallel_attributes()
def _set_tensor_parallel_attributes(self):
set_tensor_parallel_attribute(self.weight)
if self.bias is not None:
set_tensor_parallel_attribute(self.bias)
def reset_parameters(self) -> None:
# setting
fan_in = self.in_features
a = math.sqrt(5)
nonlinearity = 'leaky_relu'
# init weight
std = init.calculate_gain(nonlinearity, a) / math.sqrt(fan_in)
bound = math.sqrt(3.0) * std
with seed(ParallelMode.TENSOR):
init.uniform_(self.weight, -bound, bound)
# init bias
if self.bias is not None:
bound = 1 / math.sqrt(fan_in) if fan_in > 0 else 0
with seed(ParallelMode.TENSOR):
init.uniform_(self.bias, -bound, bound)
def forward(self, x: Tensor) -> Tensor:
# input: [m/q, n/q, k/q]
# output: [m/q, n/q, h/q]
out_shape = x.shape[:-1] + (self.hidden_size_per_partition,)
output = Matmul_AB_2D.apply(
x,
self.weight,
self.summa_dim,
out_shape,
self.row_rank,
self.col_rank,
ParallelMode.PARALLEL_2D_ROW,
ParallelMode.PARALLEL_2D_COL,
self.data_parallel_rank,
self.pipeline_parallel_rank,
self.pipeline_parallel_size,
self.tensor_parallel_size)
if self.bias is not None:
if self.skip_bias_add:
bias = Add_Bias_2D.apply(
None,
self.bias,
self.hidden_size_per_partition,
self.row_rank,
self.col_rank,
ParallelMode.PARALLEL_2D_ROW,
ParallelMode.PARALLEL_2D_COL,
True,
self.data_parallel_rank,
self.pipeline_parallel_rank,
self.pipeline_parallel_size,
self.tensor_parallel_size
)
return output, bias
else:
output = Add_Bias_2D.apply(
output,
self.bias,
self.hidden_size_per_partition,
self.row_rank,
self.col_rank,
ParallelMode.PARALLEL_2D_ROW,
ParallelMode.PARALLEL_2D_COL,
False,
self.data_parallel_rank,
self.pipeline_parallel_rank,
self.pipeline_parallel_size,
self.tensor_parallel_size
)
return output
else:
return output
@LAYERS.register_module
class LayerNorm2D(ParallelLayer):
r"""Layer Normalization for 2D parallelism
:param normalized_shape: input shape from an expected input
of size. :math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]`
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
:type normalized_shape: int
:param eps: a value added to the denominator for numerical stability, defaults to 1e-05
:type eps: float, optional
:param dtype: The dtype of parameters, defaults to None
:type dtype: torch.dtype, optional
"""
def __init__(self,
normalized_shape: int,
eps: float = 1e-05,
dtype=None
):
super().__init__()
# layer norm config
self.normalized_shape = normalized_shape
self.variance_epsilon = eps
# parallel setting
assert_summa_initialization()
self.row_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_COL)
self.col_rank = gpc.get_local_rank(ParallelMode.PARALLEL_2D_ROW)
self.summa_dim = get_summa_dim_from_env()
# partitioning dimension
self.partitioned_partition = divide(normalized_shape, self.summa_dim)
# create parameters
factory_kwargs = {'device': get_current_device(), 'dtype': dtype}
if self.row_rank == 0:
self.gamma = Parameter(torch.ones(
self.partitioned_partition,
**factory_kwargs))
self.beta = Parameter(torch.zeros(
self.partitioned_partition,
**factory_kwargs))
else:
self.gamma = Parameter(torch.tensor(
1.0,
requires_grad=True,
**factory_kwargs))
self.beta = Parameter(torch.tensor(
1.0,
requires_grad=True,
**factory_kwargs))
self._set_tensor_parallel_attributes()
def _set_tensor_parallel_attributes(self):
set_tensor_parallel_attribute(self.gamma)
set_tensor_parallel_attribute(self.beta)
def forward(self, x: Tensor) -> Tensor:
with torch.no_grad():
E_x = torch.sum(x, dim=-1, keepdim=True) # [b/q, s, 1]
torch.distributed.all_reduce(
E_x, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
E_x /= self.normalized_shape
# Var_x in the block below is the sum of input^2
Var_x = torch.sum(x * x, dim=-1, keepdim=True) # [b/q, s, 1]
torch.distributed.all_reduce(
Var_x, group=gpc.get_group(ParallelMode.PARALLEL_2D_ROW))
Var_x /= self.normalized_shape
Var_x = Var_x - E_x * E_x # variance of x [b/q, s, 1]
# this time 1/sqrt(Var_x + epsilon)
Var_x = 1.0 / torch.sqrt(Var_x + self.variance_epsilon)
output = _LayerNorm_2D.apply(x, E_x, Var_x, self.normalized_shape,
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL)
bias = Add_Bias_2D.apply(
None, self.beta, self.partitioned_partition,
self.row_rank, self.col_rank,
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL,
True,
self.data_parallel_rank,
self.pipeline_parallel_rank,
self.pipeline_parallel_size,
self.tensor_parallel_size
)
scale = Add_Bias_2D.apply(
None, self.gamma, self.partitioned_partition,
self.row_rank, self.col_rank,
ParallelMode.PARALLEL_2D_ROW, ParallelMode.PARALLEL_2D_COL,
True,
self.data_parallel_rank,
self.pipeline_parallel_rank,
self.pipeline_parallel_size,
self.tensor_parallel_size
)
output = torch.addcmul(bias, scale, output)
return output