Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

65 lines
1.8 KiB

#!/usr/bin/env python
# -*- encoding: utf-8 -*-
import os
from pathlib import Path
import torch
import torch.distributed as dist
from torchvision import datasets, transforms
import colossalai
from colossalai.context import Config
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.utils import get_dataloader
from colossalai.testing import rerun_if_address_is_in_use, spawn
CONFIG = Config(
dict(
parallel=dict(
pipeline=dict(size=1),
tensor=dict(size=1, mode=None),
),
seed=1024,
)
)
def run_data_sampler(rank, world_size, port):
dist_args = dict(config=CONFIG, rank=rank, world_size=world_size, backend="gloo", port=port, host="localhost")
colossalai.legacy.launch(**dist_args)
print("finished initialization")
# build dataset
transform_pipeline = [transforms.ToTensor()]
transform_pipeline = transforms.Compose(transform_pipeline)
dataset = datasets.CIFAR10(root=Path(os.environ["DATA"]), train=True, download=True, transform=transform_pipeline)
# build dataloader
dataloader = get_dataloader(dataset, batch_size=8, add_sampler=True)
data_iter = iter(dataloader)
img, label = data_iter.next()
img = img[0]
if gpc.get_local_rank(ParallelMode.DATA) != 0:
img_to_compare = img.clone()
else:
img_to_compare = img
dist.broadcast(img_to_compare, src=0, group=gpc.get_group(ParallelMode.DATA))
if gpc.get_local_rank(ParallelMode.DATA) != 0:
assert not torch.equal(
img, img_to_compare
), "Same image was distributed across ranks but expected it to be different"
torch.cuda.empty_cache()
@rerun_if_address_is_in_use()
def test_data_sampler():
spawn(run_data_sampler, 4)
if __name__ == "__main__":
test_data_sampler()