ColossalAI/tests/test_infer/test_ops/triton/test_decoding_attn.py

222 lines
8.4 KiB
Python

import pytest
import torch
from packaging import version
from colossalai.kernel.triton import flash_decoding_attention
from colossalai.utils import get_current_device
from tests.test_infer.test_ops.triton.kernel_utils import (
convert_kv_unpad_to_padded,
generate_caches_and_block_tables_v2,
prepare_padding_mask,
torch_attn_ref,
)
try:
import triton # noqa
HAS_TRITON = True
except ImportError:
HAS_TRITON = False
print("please install triton from https://github.com/openai/triton")
TRITON_CUDA_SUPPORT = version.parse(torch.version.cuda) > version.parse("11.4")
Q_LEN = 1
HEAD_DIM = 128
def prepare_data(
bsz: int,
num_attn_heads: int,
num_kv_heads: int,
head_dim: int,
same_context_len: bool,
q_len: int,
max_kv_seq_len: int,
dtype=torch.float16,
device="cuda",
):
# Use the provided maximum sequence length for each sequence when testing with teh same context length,
# otherwise generate random context lengths.
# returns
# q [bsz, num_attn_heads, q_len, head_dim]
# k_unpad/v_unpad [num_tokens, num_kv_heads, head_dim]
kv_lengths = (
torch.tensor([max_kv_seq_len for _ in range(bsz)], dtype=torch.int32, device=device)
if same_context_len
else torch.randint(low=1, high=max_kv_seq_len, size=(bsz,), dtype=torch.int32, device=device)
)
num_tokens = torch.sum(kv_lengths).item()
q_size = (bsz, q_len, num_attn_heads, head_dim)
q = torch.empty(size=q_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5).transpose(1, 2)
kv_size = (num_tokens, 2 * num_kv_heads, head_dim)
kv_unpad = torch.empty(size=kv_size, dtype=dtype, device=device).normal_(mean=0.0, std=0.5)
k_unpad, v_unpad = torch.split(kv_unpad, [num_kv_heads, num_kv_heads], dim=-2)
return q, k_unpad, v_unpad, kv_lengths
@pytest.mark.skipif(not (HAS_TRITON and TRITON_CUDA_SUPPORT), reason="requires triton")
@pytest.mark.parametrize("bsz", [4, 7, 32])
@pytest.mark.parametrize("block_size", [16, 32, 64])
@pytest.mark.parametrize("max_num_blocks_per_seq", [8, 32])
@pytest.mark.parametrize("num_attn_heads", [16])
@pytest.mark.parametrize("kv_group_num", [1, 2, 16])
@pytest.mark.parametrize("same_context_len", [True, False])
def test_flash_decoding(
bsz: int,
block_size: int,
max_num_blocks_per_seq: int,
num_attn_heads: int,
kv_group_num: int,
same_context_len: bool,
):
torch.manual_seed(123)
torch.cuda.empty_cache()
torch.cuda.synchronize()
torch.cuda.reset_peak_memory_stats()
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
max_seq_len = block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
q, k_unpad, v_unpad, kv_seq_lengths = prepare_data(
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, Q_LEN, max_seq_len, dtype, device
)
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_seq_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
# The maximum sequence length in the batch (if context lengths randomly generated)
max_seq_len_in_b = kv_seq_lengths.max().item()
# The maximum block length splitted on kv should be the kv cache block size
kv_max_split_num = (max_seq_len_in_b + block_size - 1) // block_size
output = torch.empty((bsz, num_attn_heads, HEAD_DIM), dtype=q.dtype, device=q.device)
mid_output = torch.empty(
size=(bsz, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
)
mid_output_lse = torch.empty(size=(bsz, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
sm_scale = 1.0 / (HEAD_DIM**0.5)
out_triton = flash_decoding_attention(
# Here we use q.squeeze(2) because we hide the q_len dimension (which is equivalent to 1),
# refer to attention forward in modeling.
q.squeeze(2),
k_cache,
v_cache,
kv_seq_lengths,
block_tables,
block_size,
max_seq_len_in_b,
output,
mid_output,
mid_output_lse,
sm_scale=sm_scale,
kv_group_num=kv_group_num,
) # [bsz, 1, num_heads, head_dim]
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_seq_lengths, bsz, max_seq_len_in_b)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_seq_lengths, bsz, max_seq_len_in_b)
torch_padding_mask = prepare_padding_mask(kv_seq_lengths, bsz, max_seq_len_in_b, q.device)
out_torch = torch_attn_ref(
q, k_torch, v_torch, torch_padding_mask, bsz, 1, max_seq_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
)
assert out_torch.shape == out_triton.shape
assert torch.allclose(out_torch, out_triton, atol=1e-3, rtol=1e-4)
BATCH = 16
BLOCK_SIZE = 32
SAME_LEN = True
WARM_UPS = 10
REPS = 100
configs = [
triton.testing.Benchmark(
x_names=["KV_LEN"],
x_vals=[2**i for i in range(8, 14)],
# x_vals=[x for x in range(256, 8192, 256)],
line_arg="provider",
line_vals=["torch", "triton"],
line_names=["Torch", "Triton"],
styles=[("red", "-"), ("blue", "-")],
ylabel="ms",
plot_name=f"decoding-block_size-{BLOCK_SIZE}-batch{BATCH}",
args={"bsz": BATCH, "block_size": BLOCK_SIZE, "same_context_len": SAME_LEN, "kv_group_num": 1},
)
]
@triton.testing.perf_report(configs)
def bench_kernel(
bsz,
KV_LEN,
provider,
block_size: int,
kv_group_num: int,
same_context_len: bool,
):
num_attn_heads = 16
max_num_blocks_per_seq = triton.cdiv(KV_LEN, block_size)
max_seq_len = block_size * max_num_blocks_per_seq
num_kv_heads = num_attn_heads // kv_group_num
assert isinstance(num_kv_heads, int) and num_kv_heads > 0, "Invalid number of kv heads."
block_size * max_num_blocks_per_seq
dtype = torch.float16
device = get_current_device()
q, k_unpad, v_unpad, kv_lengths = prepare_data(
bsz, num_attn_heads, num_kv_heads, HEAD_DIM, same_context_len, Q_LEN, max_seq_len, dtype, device
)
max_seq_len_in_b = kv_lengths.max().item() # for random lengths
quantiles = [0.5, 0.2, 0.8]
if provider == "torch":
k_torch = convert_kv_unpad_to_padded(k_unpad, kv_lengths, bsz, max_seq_len_in_b)
v_torch = convert_kv_unpad_to_padded(v_unpad, kv_lengths, bsz, max_seq_len_in_b)
torch_padding_mask = prepare_padding_mask(kv_lengths, bsz, max_seq_len_in_b, q.device)
fn = lambda: torch_attn_ref(
q, k_torch, v_torch, torch_padding_mask, bsz, 1, max_seq_len_in_b, num_attn_heads, num_kv_heads, HEAD_DIM
)
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
if provider == "triton":
k_cache, v_cache, block_tables = generate_caches_and_block_tables_v2(
k_unpad, v_unpad, kv_lengths, bsz, max_num_blocks_per_seq, block_size, dtype, device
)
block_tables = block_tables.to(device=device)
# the maximum block length splitted on kv should be the kv cache block size
kv_max_split_num = (max_seq_len_in_b + block_size - 1) // block_size
output = torch.empty((bsz, num_attn_heads, HEAD_DIM), dtype=dtype, device=device)
mid_output = torch.empty(
size=(bsz, num_attn_heads, kv_max_split_num, HEAD_DIM), dtype=torch.float32, device=q.device
)
mid_output_lse = torch.empty(size=(bsz, num_attn_heads, kv_max_split_num), dtype=torch.float32, device=q.device)
sm_scale = 1.0 / (HEAD_DIM**0.5)
fn = lambda: flash_decoding_attention(
# Here we use q.squeeze(2) because we hide the q_len dimension (which is equivalent to 1),
# refer to attention forward in modeling.
q.squeeze(2),
k_cache,
v_cache,
kv_lengths,
block_tables,
block_size,
max_seq_len_in_b,
output,
mid_output,
mid_output_lse,
sm_scale=sm_scale,
kv_group_num=kv_group_num,
) # [bsz, 1, num_heads, head_dim]
ms, min_ms, max_ms = triton.testing.do_bench(fn, warmup=WARM_UPS, rep=REPS, quantiles=quantiles)
return ms, min_ms, max_ms
if __name__ == "__main__":
test_flash_decoding(16, 32, 32, 16, 1, True)
# bench_kernel.run(save_path=".", print_data=True)