ColossalAI/tests/test_moe/test_moe_ep_tp.py

233 lines
9.5 KiB
Python

import os
import warnings
from typing import Dict
import pytest
import torch
import torch.distributed as dist
import colossalai
from colossalai.moe import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import sync_moe_model_param
from colossalai.tensor.moe_tensor.api import get_ep_group, get_ep_rank, get_ep_size, is_moe_tensor
from colossalai.testing import assert_equal_in_group, rerun_if_address_is_in_use, spawn
from colossalai.utils import get_current_device
from tests.test_moe.moe_utils import MoeGradientHandler
def sync_tp_from_local(tp_model: SparseMLP, local_model: SparseMLP, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from local model
Args:
tp_model (MoeModule)
local_model (MoeModule)
"""
for (tp_name, tp_param), (local_name, local_param) in \
zip(tp_model.named_parameters(), local_model.named_parameters()):
assert tp_name == local_name
if not is_moe_tensor(tp_param):
if assert_grad_flag:
assert torch.allclose(tp_param, local_param)
assert torch.allclose(tp_param.grad, local_param.grad)
else:
tp_param.data.copy_(local_param.data)
continue
tp_rank = get_ep_rank(tp_param)
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape, local_param.shape)) if d1 != d2][0]
tp_slice = [slice(None)] * tp_dim + [
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
]
if assert_grad_flag:
assert torch.allclose(tp_param, local_param[tuple(tp_slice)])
assert torch.allclose(tp_param.grad, local_param.grad[tuple(tp_slice)])
else:
tp_param.data.copy_(local_param[tuple(tp_slice)].data)
def sync_tp_from_ep(tp_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from ep model
Args:
tp_model (MoeModule)
ep_model (MoeModule)
"""
for (tp_name, tp_param), (ep_name, ep_param) in \
zip(tp_model.named_parameters(), ep_model.named_parameters()):
assert tp_name == ep_name
if not is_moe_tensor(tp_param):
if assert_grad_flag:
assert torch.allclose(tp_param, ep_param)
assert torch.allclose(tp_param.grad, ep_param.grad)
else:
tp_param.data.copy_(ep_param.data)
continue
# gather param from ep model
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
all_param = torch.cat(param_list, dim=0)
if assert_grad_flag:
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
all_grad = torch.cat(grad_list, dim=0)
# get tp param
tp_dim = [i for i, (d1, d2) in enumerate(zip(tp_param.shape[1:], all_param.shape[1:])) if d1 != d2][0] + 1
tp_rank = get_ep_rank(tp_param)
tp_slice = [slice(None)] * tp_dim + [
slice(tp_param.shape[tp_dim] * tp_rank, tp_param.shape[tp_dim] * (tp_rank + 1))
]
new_tp_param = all_param[tuple(tp_slice)]
if assert_grad_flag:
new_grad = all_grad[tuple(tp_slice)]
if assert_grad_flag:
assert torch.allclose(tp_param, new_tp_param)
assert torch.allclose(tp_param.grad, new_grad)
else:
tp_param.data.copy_(new_tp_param.data)
def sync_local_from_ep(local_model: SparseMLP, ep_model: SparseMLP, assert_grad_flag: bool = False) -> None:
"""Sync the parameters of tp model from ep model
Args:
local_model (MoeModule)
ep_model (MoeModule)
"""
for (local_name, local_param), (ep_name, ep_param) in \
zip(local_model.named_parameters(), ep_model.named_parameters()):
assert local_name == ep_name
if "experts" not in local_name:
if assert_grad_flag:
assert torch.allclose(local_param, ep_param)
assert torch.allclose(local_param.grad, ep_param.grad)
else:
local_param.data.copy_(ep_param.data)
continue
# gather param from ep model
param_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(param_list, ep_param, group=get_ep_group(ep_param))
all_param = torch.cat(param_list, dim=0)
if assert_grad_flag:
grad_list = [torch.zeros_like(ep_param) for _ in range(get_ep_size(ep_param))]
dist.all_gather(grad_list, ep_param.grad, group=get_ep_group(ep_param))
all_grad = torch.cat(grad_list, dim=0)
if assert_grad_flag:
assert torch.allclose(local_param, all_param)
assert torch.allclose(local_param.grad, all_grad)
else:
local_param.data.copy_(all_param.data)
def run_test(rank: int, world_size: int, port: int, num_experts: int, batch_size: int, dim: int, config: Dict):
assert batch_size % world_size == 0
colossalai.launch(config=dict(), rank=rank, world_size=world_size, host="localhost", port=port, backend="nccl")
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel=None)
local_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel="EP")
enable_hierarchical_comm = config.get("enable_hierarchical_comm", False)
if enable_hierarchical_comm:
os.environ["LOCAL_WORLD_SIZE"] = str(world_size)
ep_model = SparseMLP(
num_experts=num_experts,
hidden_size=dim,
intermediate_size=dim * 2,
enable_hierarchical_comm=enable_hierarchical_comm
)
MOE_MANAGER.__init__()
MOE_MANAGER.setup(parallel="TP")
tp_model = SparseMLP(num_experts=num_experts, hidden_size=dim, intermediate_size=dim * 2)
ep_model = ep_model.to(get_current_device())
tp_model = tp_model.to(get_current_device())
local_model = local_model.to(get_current_device())
# sync ep param
sync_moe_model_param(ep_model)
dist_dict = MOE_MANAGER.parallel_info_dict
assert_equal_in_group(ep_model.experts.wi.data, dist_dict[world_size].dp_group)
assert_equal_in_group(ep_model.experts.wo.data, dist_dict[world_size].dp_group)
ep_grad_handler = MoeGradientHandler(ep_model)
# sync local param
sync_local_from_ep(local_model, ep_model)
# sync tp param
sync_tp_from_ep(tp_model, ep_model)
tp_grad_handler = MoeGradientHandler(tp_model)
rank = dist.get_rank()
input_data = torch.randn(batch_size, dim, device=get_current_device())
micro_batch_size = batch_size // world_size
index = rank * micro_batch_size
# NOTE: ep & tp takes in sharded data for each process
shard_data = input_data.detach()[index:index + micro_batch_size]
out_local = local_model(input_data)
MOE_MANAGER.reset_loss()
out_tp = tp_model(shard_data)
MOE_MANAGER.reset_loss()
out_ep = ep_model(shard_data)
MOE_MANAGER.reset_loss()
assert torch.allclose(out_tp, out_ep, atol=1e-6), \
f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_tp - out_ep))}"
try:
out_local_slice = out_local[index:index + micro_batch_size]
assert torch.allclose(out_ep, out_local_slice, atol=1e-6), \
f"Rank {rank} failed, max diff: {torch.max(torch.abs(out_ep - out_local_slice))}"
except AssertionError as e:
"""
e.g., in local model, tokens = 4, capacity = 2, experts = 2, topk = 1
router yields [01] --> [0], [23] --> [1], this is valid as capacity is 2
However, in ep mode, there are 2 separate routers dealing with sharded data.
Assume router 0 handles token [01] and router 1 handles token [23].
Note that for each router the capacity is only 1 !!!
Thus, router 0 may yields [0] --> [0] or [1] --> [0], but not both.
The same thing happens on router 1. And finally some tokens are dropped due to the sharded nature.
"""
warnings.warn(
"EP & TP may result in different behavior from local model. "
"Please check the comments for details."
)
out_local.mean().backward()
out_tp.mean().backward()
tp_grad_handler.handle_gradient()
out_ep.mean().backward()
ep_grad_handler.handle_gradient()
assert_equal_in_group(ep_model.experts.wi.grad, dist_dict[world_size].dp_group)
assert_equal_in_group(ep_model.experts.wo.grad, dist_dict[world_size].dp_group)
sync_tp_from_ep(tp_model, ep_model, assert_grad_flag=True)
try:
sync_local_from_ep(local_model, ep_model, assert_grad_flag=True)
except AssertionError as e:
warnings.warn(
"EP & TP may result in different behavior from local model. "
"Please check the comments for details."
)
@pytest.mark.dist
@pytest.mark.parametrize("num_experts", [4, 64])
@pytest.mark.parametrize("batch_size", [16])
@pytest.mark.parametrize("dim", [64])
@pytest.mark.parametrize("config", [
{"enable_hierarchical_comm": False},
{"enable_hierarchical_comm": True},
])
@rerun_if_address_is_in_use()
def test_moe_ep_tp(num_experts: int, batch_size: int, dim: int, config: Dict):
spawn(run_test, 2, num_experts=num_experts, batch_size=batch_size, dim=dim, config=config)
if __name__ == '__main__':
test_moe_ep_tp(num_experts=8, batch_size=32, dim=32)