mirror of https://github.com/hpcaitech/ColossalAI
91 lines
3.4 KiB
Python
91 lines
3.4 KiB
Python
import torch
|
|
import torch.distributed as dist
|
|
import torch.nn as nn
|
|
|
|
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
|
|
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
|
|
from colossalai.legacy.registry import GRADIENT_HANDLER
|
|
from colossalai.moe import SparseMLP
|
|
from colossalai.moe.manager import MOE_MANAGER
|
|
from colossalai.moe.utils import get_moe_epsize_param_dict
|
|
|
|
|
|
class MoeModel(nn.Module):
|
|
def __init__(self, enable_load_balance: bool = False):
|
|
class TestSubModule(nn.Module):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.moe = SparseMLP(
|
|
num_experts=8, hidden_size=16, intermediate_size=32, enable_load_balance=enable_load_balance
|
|
)
|
|
self.proj = nn.Linear(16, 4)
|
|
|
|
def forward(self, x):
|
|
x = self.moe(x)
|
|
x = self.proj(x)
|
|
return x
|
|
|
|
super().__init__()
|
|
self.test_embed = nn.Linear(4, 16)
|
|
self.test_transform = TestSubModule()
|
|
|
|
def forward(self, x):
|
|
MOE_MANAGER.reset_loss()
|
|
|
|
x = self.test_embed(x)
|
|
x = self.test_transform(x)
|
|
|
|
return x
|
|
|
|
|
|
@GRADIENT_HANDLER.register_module
|
|
class MoeGradientHandler(BaseGradientHandler):
|
|
"""A helper class to handle all-reduce operations in a data parallel group and
|
|
moe model parallel. A all-reduce collective communication will be operated in
|
|
:func:`handle_gradient` among a data parallel group.
|
|
For better performance, it bucketizes the gradients of all parameters that are
|
|
the same type to improve the efficiency of communication.
|
|
|
|
Args:
|
|
model (Module): Model where the gradients accumulate.
|
|
optimizer (Optimizer): Optimizer for updating the parameters.
|
|
"""
|
|
|
|
def __init__(self, model, optimizer=None):
|
|
super().__init__(model, optimizer)
|
|
|
|
def handle_gradient(self):
|
|
"""A method running an all-reduce operation in a data parallel group.
|
|
Then running an all-reduce operation for all parameters in experts
|
|
across moe model parallel group
|
|
"""
|
|
if dist.get_world_size() > 1:
|
|
epsize_param_dict = get_moe_epsize_param_dict(self._model)
|
|
|
|
# epsize is 1, indicating the params are replicated among processes in data parallelism
|
|
# use the ParallelMode.DATA to get data parallel group
|
|
# reduce gradients for all parameters in data parallelism
|
|
if 1 in epsize_param_dict:
|
|
bucket_allreduce(param_list=epsize_param_dict[1])
|
|
|
|
for ep_size in epsize_param_dict:
|
|
if ep_size != 1 and ep_size != MOE_MANAGER.world_size:
|
|
bucket_allreduce(
|
|
param_list=epsize_param_dict[ep_size], group=MOE_MANAGER.parallel_info_dict[ep_size].dp_group
|
|
)
|
|
|
|
|
|
def assert_not_equal_in_group(tensor, process_group=None):
|
|
# all gather tensors from different ranks
|
|
world_size = dist.get_world_size(process_group)
|
|
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
|
|
dist.all_gather(tensor_list, tensor, group=process_group)
|
|
|
|
# check if they are equal one by one
|
|
for i in range(world_size - 1):
|
|
a = tensor_list[i]
|
|
b = tensor_list[i + 1]
|
|
assert not torch.allclose(a, b), \
|
|
(f"expected tensors on rank {i} and {i + 1} not to be equal "
|
|
f"but they are, {a} vs {b}")
|