ColossalAI/tests/test_moe/moe_utils.py

91 lines
3.4 KiB
Python

import torch
import torch.distributed as dist
import torch.nn as nn
from colossalai.legacy.engine.gradient_handler._base_gradient_handler import BaseGradientHandler
from colossalai.legacy.engine.gradient_handler.utils import bucket_allreduce
from colossalai.legacy.registry import GRADIENT_HANDLER
from colossalai.moe import SparseMLP
from colossalai.moe.manager import MOE_MANAGER
from colossalai.moe.utils import get_moe_epsize_param_dict
class MoeModel(nn.Module):
def __init__(self, enable_load_balance: bool = False):
class TestSubModule(nn.Module):
def __init__(self):
super().__init__()
self.moe = SparseMLP(
num_experts=8, hidden_size=16, intermediate_size=32, enable_load_balance=enable_load_balance
)
self.proj = nn.Linear(16, 4)
def forward(self, x):
x = self.moe(x)
x = self.proj(x)
return x
super().__init__()
self.test_embed = nn.Linear(4, 16)
self.test_transform = TestSubModule()
def forward(self, x):
MOE_MANAGER.reset_loss()
x = self.test_embed(x)
x = self.test_transform(x)
return x
@GRADIENT_HANDLER.register_module
class MoeGradientHandler(BaseGradientHandler):
"""A helper class to handle all-reduce operations in a data parallel group and
moe model parallel. A all-reduce collective communication will be operated in
:func:`handle_gradient` among a data parallel group.
For better performance, it bucketizes the gradients of all parameters that are
the same type to improve the efficiency of communication.
Args:
model (Module): Model where the gradients accumulate.
optimizer (Optimizer): Optimizer for updating the parameters.
"""
def __init__(self, model, optimizer=None):
super().__init__(model, optimizer)
def handle_gradient(self):
"""A method running an all-reduce operation in a data parallel group.
Then running an all-reduce operation for all parameters in experts
across moe model parallel group
"""
if dist.get_world_size() > 1:
epsize_param_dict = get_moe_epsize_param_dict(self._model)
# epsize is 1, indicating the params are replicated among processes in data parallelism
# use the ParallelMode.DATA to get data parallel group
# reduce gradients for all parameters in data parallelism
if 1 in epsize_param_dict:
bucket_allreduce(param_list=epsize_param_dict[1])
for ep_size in epsize_param_dict:
if ep_size != 1 and ep_size != MOE_MANAGER.world_size:
bucket_allreduce(
param_list=epsize_param_dict[ep_size], group=MOE_MANAGER.parallel_info_dict[ep_size].dp_group
)
def assert_not_equal_in_group(tensor, process_group=None):
# all gather tensors from different ranks
world_size = dist.get_world_size(process_group)
tensor_list = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(tensor_list, tensor, group=process_group)
# check if they are equal one by one
for i in range(world_size - 1):
a = tensor_list[i]
b = tensor_list[i + 1]
assert not torch.allclose(a, b), \
(f"expected tensors on rank {i} and {i + 1} not to be equal "
f"but they are, {a} vs {b}")