mirror of https://github.com/hpcaitech/ColossalAI
124 lines
5.0 KiB
Python
124 lines
5.0 KiB
Python
from typing import Callable, Optional
|
|
|
|
import torch
|
|
import tqdm
|
|
from torch.optim import Optimizer
|
|
from torch.optim.lr_scheduler import _LRScheduler
|
|
from torch.utils.data import DataLoader
|
|
|
|
from .base import SLTrainer
|
|
from .strategies import Strategy
|
|
from .utils import is_rank_0
|
|
|
|
|
|
class RewardModelTrainer(SLTrainer):
|
|
"""
|
|
Trainer to use while training reward model.
|
|
|
|
Args:
|
|
model (torch.nn.Module): the model to train
|
|
strategy (Strategy): the strategy to use for training
|
|
optim (Optimizer): the optimizer to use for training
|
|
lr_scheduler (_LRScheduler): the lr scheduler to use for training
|
|
loss_fn (callable): the loss function to use for training
|
|
max_epochs (int, defaults to 2): the number of epochs to train
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
model,
|
|
strategy: Strategy,
|
|
optim: Optimizer,
|
|
lr_scheduler: _LRScheduler,
|
|
loss_fn: Callable,
|
|
max_epochs: int = 1,
|
|
) -> None:
|
|
super().__init__(strategy, max_epochs, model, optim)
|
|
|
|
self.loss_fn = loss_fn
|
|
self.scheduler = lr_scheduler
|
|
|
|
self.num_train_step = 0
|
|
|
|
def _eval(self, epoch):
|
|
if self.eval_dataloader is not None:
|
|
self.model.eval()
|
|
dist, num_correct, num_samples = 0, 0, 0
|
|
with torch.no_grad():
|
|
for chosen_ids, c_mask, reject_ids, r_mask in self.eval_dataloader:
|
|
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
|
|
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
|
|
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
|
|
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
|
|
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
|
|
reject_reward = self.model(reject_ids, attention_mask=r_mask)
|
|
num_samples += chosen_ids.size(0)
|
|
num_correct += (chosen_reward > reject_reward).sum().item()
|
|
dist += (chosen_reward - reject_reward).mean().item()
|
|
self.dist = dist / len(self.eval_dataloader)
|
|
self.acc = num_correct / num_samples
|
|
|
|
if self.writer:
|
|
self.writer.add_scalar("eval/dist", self.dist, epoch)
|
|
self.writer.add_scalar("eval/acc", self.acc, epoch)
|
|
|
|
def _train(self, epoch):
|
|
self.model.train()
|
|
step_bar = tqdm.trange(
|
|
len(self.train_dataloader), desc=f"Epoch {epoch + 1}/{self.max_epochs}", disable=not is_rank_0()
|
|
)
|
|
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
|
|
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
|
|
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
|
|
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
|
|
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
|
|
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
|
|
reject_reward = self.model(reject_ids, attention_mask=r_mask)
|
|
loss = self.loss_fn(chosen_reward, reject_reward)
|
|
self.strategy.backward(loss, self.model, self.optimizer)
|
|
self.strategy.optimizer_step(self.optimizer)
|
|
self.optimizer.zero_grad()
|
|
if self.writer:
|
|
self.writer.add_scalar("train/loss", loss.item(), self.num_train_step)
|
|
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
|
|
self.writer.add_scalar("train/dist", (chosen_reward - reject_reward).mean().item(), self.num_train_step)
|
|
self.writer.add_scalar(
|
|
"train/acc", (chosen_reward > reject_reward).float().mean().item(), self.num_train_step
|
|
)
|
|
self.num_train_step += 1
|
|
if self.num_train_step % 100 == 0:
|
|
self.scheduler.step()
|
|
step_bar.update()
|
|
step_bar.close()
|
|
|
|
def _before_fit(
|
|
self,
|
|
train_dataloader: DataLoader,
|
|
eval_dataloader: DataLoader,
|
|
log_dir: Optional[str] = None,
|
|
use_wandb: bool = False,
|
|
):
|
|
"""
|
|
Args:
|
|
train_dataloader (DataLoader): the dataloader to use for training
|
|
eval_dataloader (DataLoader): the dataloader to use for evaluation
|
|
"""
|
|
self.train_dataloader = train_dataloader
|
|
self.eval_dataloader = eval_dataloader
|
|
|
|
self.writer = None
|
|
if use_wandb and is_rank_0():
|
|
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
|
|
import wandb
|
|
|
|
wandb.init(project="Coati-rm", sync_tensorboard=True)
|
|
if log_dir is not None and is_rank_0():
|
|
import os
|
|
import time
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
log_dir = os.path.join(log_dir, "rm")
|
|
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
|
|
self.writer = SummaryWriter(log_dir=log_dir)
|