ColossalAI/applications/Chat/coati/trainer/rm.py

124 lines
5.0 KiB
Python

from typing import Callable, Optional
import torch
import tqdm
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler
from torch.utils.data import DataLoader
from .base import SLTrainer
from .strategies import Strategy
from .utils import is_rank_0
class RewardModelTrainer(SLTrainer):
"""
Trainer to use while training reward model.
Args:
model (torch.nn.Module): the model to train
strategy (Strategy): the strategy to use for training
optim (Optimizer): the optimizer to use for training
lr_scheduler (_LRScheduler): the lr scheduler to use for training
loss_fn (callable): the loss function to use for training
max_epochs (int, defaults to 2): the number of epochs to train
"""
def __init__(
self,
model,
strategy: Strategy,
optim: Optimizer,
lr_scheduler: _LRScheduler,
loss_fn: Callable,
max_epochs: int = 1,
) -> None:
super().__init__(strategy, max_epochs, model, optim)
self.loss_fn = loss_fn
self.scheduler = lr_scheduler
self.num_train_step = 0
def _eval(self, epoch):
if self.eval_dataloader is not None:
self.model.eval()
dist, num_correct, num_samples = 0, 0, 0
with torch.no_grad():
for chosen_ids, c_mask, reject_ids, r_mask in self.eval_dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
num_samples += chosen_ids.size(0)
num_correct += (chosen_reward > reject_reward).sum().item()
dist += (chosen_reward - reject_reward).mean().item()
self.dist = dist / len(self.eval_dataloader)
self.acc = num_correct / num_samples
if self.writer:
self.writer.add_scalar("eval/dist", self.dist, epoch)
self.writer.add_scalar("eval/acc", self.acc, epoch)
def _train(self, epoch):
self.model.train()
step_bar = tqdm.trange(
len(self.train_dataloader), desc=f"Epoch {epoch + 1}/{self.max_epochs}", disable=not is_rank_0()
)
for chosen_ids, c_mask, reject_ids, r_mask in self.train_dataloader:
chosen_ids = chosen_ids.squeeze(1).to(torch.cuda.current_device())
c_mask = c_mask.squeeze(1).to(torch.cuda.current_device())
reject_ids = reject_ids.squeeze(1).to(torch.cuda.current_device())
r_mask = r_mask.squeeze(1).to(torch.cuda.current_device())
chosen_reward = self.model(chosen_ids, attention_mask=c_mask)
reject_reward = self.model(reject_ids, attention_mask=r_mask)
loss = self.loss_fn(chosen_reward, reject_reward)
self.strategy.backward(loss, self.model, self.optimizer)
self.strategy.optimizer_step(self.optimizer)
self.optimizer.zero_grad()
if self.writer:
self.writer.add_scalar("train/loss", loss.item(), self.num_train_step)
self.writer.add_scalar("train/lr", self.optimizer.param_groups[0]["lr"], self.num_train_step)
self.writer.add_scalar("train/dist", (chosen_reward - reject_reward).mean().item(), self.num_train_step)
self.writer.add_scalar(
"train/acc", (chosen_reward > reject_reward).float().mean().item(), self.num_train_step
)
self.num_train_step += 1
if self.num_train_step % 100 == 0:
self.scheduler.step()
step_bar.update()
step_bar.close()
def _before_fit(
self,
train_dataloader: DataLoader,
eval_dataloader: DataLoader,
log_dir: Optional[str] = None,
use_wandb: bool = False,
):
"""
Args:
train_dataloader (DataLoader): the dataloader to use for training
eval_dataloader (DataLoader): the dataloader to use for evaluation
"""
self.train_dataloader = train_dataloader
self.eval_dataloader = eval_dataloader
self.writer = None
if use_wandb and is_rank_0():
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
import wandb
wandb.init(project="Coati-rm", sync_tensorboard=True)
if log_dir is not None and is_rank_0():
import os
import time
from torch.utils.tensorboard import SummaryWriter
log_dir = os.path.join(log_dir, "rm")
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
self.writer = SummaryWriter(log_dir=log_dir)