mirror of https://github.com/hpcaitech/ColossalAI
203 lines
9.1 KiB
Python
203 lines
9.1 KiB
Python
from typing import Dict, List, Optional
|
|
|
|
from coati.experience_buffer import NaiveExperienceBuffer
|
|
from coati.experience_maker import Experience, NaiveExperienceMaker
|
|
from coati.models.base import Actor, Critic, RewardModel, get_base_model
|
|
from coati.models.loss import GPTLMLoss, PolicyLoss, ValueLoss
|
|
from coati.models.utils import calc_action_log_probs
|
|
from torch.optim import Optimizer
|
|
from torch.utils.data import DataLoader, DistributedSampler
|
|
from tqdm import tqdm
|
|
from transformers import PreTrainedTokenizerBase
|
|
|
|
from colossalai.utils import get_current_device
|
|
|
|
from .base import OnPolicyTrainer
|
|
from .callbacks import Callback
|
|
from .strategies import GeminiStrategy, Strategy
|
|
from .utils import CycledDataLoader, is_rank_0, to_device
|
|
|
|
|
|
def _set_default_generate_kwargs(strategy: Strategy, generate_kwargs: dict, actor: Actor) -> Dict:
|
|
unwrapped_model = strategy.unwrap_model(actor)
|
|
hf_model = get_base_model(unwrapped_model)
|
|
new_kwargs = {**generate_kwargs}
|
|
# use huggingface models method directly
|
|
if "prepare_inputs_fn" not in generate_kwargs and hasattr(hf_model, "prepare_inputs_for_generation"):
|
|
new_kwargs["prepare_inputs_fn"] = hf_model.prepare_inputs_for_generation
|
|
|
|
if "update_model_kwargs_fn" not in generate_kwargs and hasattr(hf_model, "_update_model_kwargs_for_generation"):
|
|
new_kwargs["update_model_kwargs_fn"] = hf_model._update_model_kwargs_for_generation
|
|
|
|
return new_kwargs
|
|
|
|
|
|
class PPOTrainer(OnPolicyTrainer):
|
|
"""
|
|
Trainer for PPO algorithm.
|
|
|
|
Args:
|
|
strategy (Strategy): the strategy to use for training
|
|
actor (Actor): the actor model in ppo algorithm
|
|
critic (Critic): the critic model in ppo algorithm
|
|
reward_model (RewardModel): the reward model in rlhf algorithm to make reward of sentences
|
|
initial_model (Actor): the initial model in rlhf algorithm to generate reference logics to limit the update of actor
|
|
actor_optim (Optimizer): the optimizer to use for actor model
|
|
critic_optim (Optimizer): the optimizer to use for critic model
|
|
kl_coef (float, defaults to 0.1): the coefficient of kl divergence loss
|
|
train_batch_size (int, defaults to 8): the batch size to use for training
|
|
buffer_limit (int, defaults to 0): the max_size limitation of buffer
|
|
buffer_cpu_offload (bool, defaults to True): whether to offload buffer to cpu
|
|
eps_clip (float, defaults to 0.2): the clip coefficient of policy loss
|
|
vf_coef (float, defaults to 1.0): the coefficient of value loss
|
|
ptx_coef (float, defaults to 0.9): the coefficient of ptx loss
|
|
value_clip (float, defaults to 0.4): the clip coefficient of value loss
|
|
sample_buffer (bool, defaults to False): whether to sample from buffer
|
|
dataloader_pin_memory (bool, defaults to True): whether to pin memory for data loader
|
|
offload_inference_models (bool, defaults to True): whether to offload inference models to cpu during training process
|
|
callbacks (List[Callback], defaults to []): the callbacks to call during training process
|
|
generate_kwargs (dict, optional): the kwargs to use while model generating
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
strategy: Strategy,
|
|
actor: Actor,
|
|
critic: Critic,
|
|
reward_model: RewardModel,
|
|
initial_model: Actor,
|
|
actor_optim: Optimizer,
|
|
critic_optim: Optimizer,
|
|
tokenizer: PreTrainedTokenizerBase,
|
|
kl_coef: float = 0.1,
|
|
ptx_coef: float = 0.9,
|
|
train_batch_size: int = 8,
|
|
buffer_limit: int = 0,
|
|
buffer_cpu_offload: bool = True,
|
|
eps_clip: float = 0.2,
|
|
vf_coef: float = 1.0,
|
|
value_clip: float = 0.4,
|
|
sample_buffer: bool = False,
|
|
dataloader_pin_memory: bool = True,
|
|
offload_inference_models: bool = True,
|
|
callbacks: List[Callback] = [],
|
|
**generate_kwargs,
|
|
) -> None:
|
|
if isinstance(strategy, GeminiStrategy):
|
|
assert not offload_inference_models, "GeminiPlugin is not compatible with manual model.to('cpu')"
|
|
|
|
data_buffer = NaiveExperienceBuffer(train_batch_size, buffer_limit, buffer_cpu_offload)
|
|
super().__init__(strategy, data_buffer, sample_buffer, dataloader_pin_memory, callbacks)
|
|
|
|
self.generate_kwargs = _set_default_generate_kwargs(strategy, generate_kwargs, actor)
|
|
self.experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model, tokenizer, kl_coef)
|
|
|
|
self.actor = actor
|
|
self.critic = critic
|
|
self.tokenizer = tokenizer
|
|
|
|
self.actor_loss_fn = PolicyLoss(eps_clip)
|
|
self.critic_loss_fn = ValueLoss(value_clip)
|
|
self.vf_coef = vf_coef
|
|
self.ptx_loss_fn = GPTLMLoss()
|
|
self.ptx_coef = ptx_coef
|
|
self.actor_optim = actor_optim
|
|
self.critic_optim = critic_optim
|
|
|
|
self.offload_inference_models = offload_inference_models
|
|
self.device = get_current_device()
|
|
|
|
def _before_fit(
|
|
self,
|
|
prompt_dataloader: DataLoader,
|
|
pretrain_dataloader: DataLoader,
|
|
log_dir: Optional[str] = None,
|
|
use_wandb: bool = False,
|
|
):
|
|
"""
|
|
Args:
|
|
prompt_dataloader (DataLoader): the dataloader to use for prompt data
|
|
pretrain_dataloader (DataLoader): the dataloader to use for pretrain data
|
|
"""
|
|
self.prompt_dataloader = CycledDataLoader(prompt_dataloader)
|
|
self.pretrain_dataloader = CycledDataLoader(pretrain_dataloader)
|
|
|
|
self.writer = None
|
|
if use_wandb and is_rank_0():
|
|
assert log_dir is not None, "log_dir must be provided when use_wandb is True"
|
|
import wandb
|
|
|
|
wandb.init(project="Coati-ppo", sync_tensorboard=True)
|
|
if log_dir is not None and is_rank_0():
|
|
import os
|
|
import time
|
|
|
|
from torch.utils.tensorboard import SummaryWriter
|
|
|
|
log_dir = os.path.join(log_dir, "ppo")
|
|
log_dir = os.path.join(log_dir, time.strftime("%Y-%m-%d_%H:%M:%S", time.localtime()))
|
|
self.writer = SummaryWriter(log_dir=log_dir)
|
|
|
|
def _make_experience(self, collect_step: int) -> Experience:
|
|
prompts = self.prompt_dataloader.next()
|
|
if self.offload_inference_models:
|
|
# TODO(ver217): this may be controlled by strategy if they are prepared by strategy
|
|
self.experience_maker.initial_model.to(self.device)
|
|
self.experience_maker.reward_model.to(self.device)
|
|
assert isinstance(prompts, dict), f'Unsupported input type "{type(prompts)}"'
|
|
return self.experience_maker.make_experience(**prompts, **self.generate_kwargs)
|
|
|
|
def _training_step(self, experience: Experience):
|
|
self.actor.train()
|
|
self.critic.train()
|
|
# policy loss
|
|
num_actions = experience.action_log_probs.size(1)
|
|
actor_logits = self.actor(experience.sequences, experience.attention_mask)["logits"]
|
|
action_log_probs = calc_action_log_probs(actor_logits, experience.sequences, num_actions)
|
|
actor_loss = self.actor_loss_fn(
|
|
action_log_probs, experience.action_log_probs, experience.advantages, action_mask=experience.action_mask
|
|
)
|
|
actor_loss = (1 - self.ptx_coef) * actor_loss
|
|
self.strategy.backward(actor_loss, self.actor, self.actor_optim)
|
|
|
|
# ptx loss
|
|
if self.ptx_coef != 0:
|
|
batch = self.pretrain_dataloader.next()
|
|
batch = to_device(batch, self.device)
|
|
ptx_log_probs = self.actor(batch["input_ids"], batch["attention_mask"])["logits"]
|
|
ptx_loss = self.ptx_coef * self.ptx_loss_fn(ptx_log_probs, batch["labels"])
|
|
self.strategy.backward(ptx_loss, self.actor, self.actor_optim)
|
|
|
|
self.strategy.optimizer_step(self.actor_optim)
|
|
self.actor_optim.zero_grad()
|
|
|
|
# value loss
|
|
values = self.critic(experience.sequences, attention_mask=experience.attention_mask)
|
|
critic_loss = self.critic_loss_fn(values, experience.values, experience.reward)
|
|
critic_loss = critic_loss * self.vf_coef
|
|
self.strategy.backward(critic_loss, self.critic, self.critic_optim)
|
|
self.strategy.optimizer_step(self.critic_optim)
|
|
self.critic_optim.zero_grad()
|
|
|
|
def _learn(self, update_step: int):
|
|
if self.offload_inference_models:
|
|
self.experience_maker.initial_model.to("cpu")
|
|
self.experience_maker.reward_model.to("cpu")
|
|
|
|
# buffer may be empty at first, we should rebuild at each training
|
|
if self.sample_buffer:
|
|
experience = self.data_buffer.sample()
|
|
self._on_learn_batch_start()
|
|
experience.to_device(self.device)
|
|
self._training_step(experience)
|
|
self._on_learn_batch_end(experience)
|
|
else:
|
|
if isinstance(self.dataloader.sampler, DistributedSampler):
|
|
self.dataloader.sampler.set_epoch(update_step)
|
|
pbar = tqdm(self.dataloader, desc=f"Train epoch [{update_step + 1}]", disable=not is_rank_0())
|
|
for experience in pbar:
|
|
self._on_learn_batch_start()
|
|
experience.to_device(self.device)
|
|
self._training_step(experience)
|
|
self._on_learn_batch_end(experience)
|