mirror of https://github.com/hpcaitech/ColossalAI
143 lines
6.2 KiB
Python
143 lines
6.2 KiB
Python
from colossalai.shardformer.layer import FusedLayerNorm, Linear1D_Col, Linear1D_Row, VocabParallelEmbedding1D
|
|
|
|
from .._utils import getattr_, setattr_
|
|
from .base_policy import ModulePolicyDescription, Policy, SubModuleReplacementDescription
|
|
|
|
__all__ = [
|
|
'OPTPolicy', 'OPTModelPolicy', 'OPTForCausalLMPolicy', 'OPTForSequenceClassificationPolicy',
|
|
'OPTForQuestionAnsweringPolicy'
|
|
]
|
|
|
|
|
|
class OPTPolicy(Policy):
|
|
|
|
def config_sanity_check(self):
|
|
pass
|
|
|
|
def preprocess(self):
|
|
# reshape the embedding layer
|
|
r"""
|
|
Reshape the Embedding layer to make the embedding dimension divisible by world_size
|
|
"""
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
vocab_size = self.model.config.vocab_size
|
|
world_size = self.shard_config.tensor_parallel_size
|
|
if vocab_size % world_size != 0:
|
|
new_vocab_size = vocab_size + world_size - vocab_size % world_size
|
|
self.model.resize_token_embeddings(new_vocab_size)
|
|
return self.model
|
|
|
|
def module_policy(self):
|
|
from transformers.models.opt.modeling_opt import OPTAttention, OPTDecoder, OPTDecoderLayer
|
|
|
|
policy = {}
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
policy[OPTDecoder] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="embed_tokens",
|
|
target_module=VocabParallelEmbedding1D,
|
|
)
|
|
])
|
|
policy[OPTDecoderLayer] = ModulePolicyDescription(sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="fc1",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="fc2",
|
|
target_module=Linear1D_Row,
|
|
)
|
|
])
|
|
|
|
policy[OPTAttention] = ModulePolicyDescription(attribute_replacement={
|
|
"embed_dim": self.model.config.hidden_size // self.shard_config.tensor_parallel_size,
|
|
"num_heads": self.model.config.num_attention_heads // self.shard_config.tensor_parallel_size
|
|
},
|
|
sub_module_replacement=[
|
|
SubModuleReplacementDescription(
|
|
suffix="q_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="k_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="v_proj",
|
|
target_module=Linear1D_Col,
|
|
),
|
|
SubModuleReplacementDescription(
|
|
suffix="out_proj",
|
|
target_module=Linear1D_Row,
|
|
),
|
|
])
|
|
|
|
# optimization configuration
|
|
if self.shard_config.enable_fused_normalization:
|
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
|
suffix="final_layer_norm", target_module=FusedLayerNorm, ignore_if_not_exist=True),
|
|
policy=policy,
|
|
target_key=OPTDecoder)
|
|
self.append_or_create_submodule_replacement(description=[
|
|
SubModuleReplacementDescription(suffix="self_attn_layer_norm",
|
|
target_module=FusedLayerNorm,
|
|
ignore_if_not_exist=True),
|
|
SubModuleReplacementDescription(suffix="final_layer_norm",
|
|
target_module=FusedLayerNorm,
|
|
ignore_if_not_exist=True)
|
|
],
|
|
policy=policy,
|
|
target_key=OPTDecoderLayer)
|
|
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
return self.model
|
|
|
|
|
|
class OPTModelPolicy(OPTPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
|
|
class OPTForCausalLMPolicy(OPTPolicy):
|
|
|
|
def module_policy(self):
|
|
from transformers.models.opt.modeling_opt import OPTForCausalLM
|
|
|
|
policy = super().module_policy()
|
|
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
self.append_or_create_submodule_replacement(description=SubModuleReplacementDescription(
|
|
suffix="lm_head", target_module=Linear1D_Col, kwargs=dict(gather_output=True)),
|
|
policy=policy,
|
|
target_key=OPTForCausalLM)
|
|
return policy
|
|
|
|
def postprocess(self):
|
|
if self.shard_config.enable_tensor_parallelism:
|
|
binding_map = {
|
|
'model.decoder.embed_tokens': 'lm_head',
|
|
}
|
|
|
|
for k, v in binding_map.items():
|
|
src_mod = getattr_(self.model, k)
|
|
dst_mod = getattr_(self.model, v)
|
|
dst_mod.weight = src_mod.weight
|
|
|
|
return self.model
|
|
|
|
|
|
class OPTForSequenceClassificationPolicy(OPTPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|
|
|
|
|
|
class OPTForQuestionAnsweringPolicy(OPTPolicy):
|
|
|
|
def __init__(self) -> None:
|
|
super().__init__()
|