ColossalAI/colossalai/shardformer/layer/_operation.py

291 lines
9.4 KiB
Python

import torch
import torch.distributed as dist
import torch.nn.functional as F
try:
import fused_mix_prec_layer_norm_cuda
except:
fused_mix_prec_layer_norm_cuda = None
class FusedLayerNormAffineFunction1D(torch.autograd.Function):
r"""Layernorm
Args:
input: input matrix.
weight: weight matrix.
bias: bias matrix.
normalized_shape: input shape from an expected input of size.
:math:`[* \times \text{normalized_shape}[0] \times \text{normalized_shape}[1] \times \ldots \times \text{normalized_shape}[-1]]`
If a single integer is used, it is treated as a singleton list, and this module will
normalize over the last dimension which is expected to be of that specific size.
eps: a value added to the denominator for numerical stability
"""
@staticmethod
def forward(ctx, input, weight, bias, normalized_shape, eps):
ctx.normalized_shape = normalized_shape
ctx.eps = eps
input_ = input.contiguous()
weight_ = weight.contiguous()
bias_ = bias.contiguous()
output, mean, invvar = fused_mix_prec_layer_norm_cuda.forward_affine(input_, ctx.normalized_shape, weight_,
bias_, ctx.eps)
ctx.save_for_backward(input_, weight_, bias_, mean, invvar)
return output
@staticmethod
def backward(ctx, grad_output):
input_, weight_, bias_, mean, invvar = ctx.saved_tensors
grad_input = grad_weight = grad_bias = None
grad_input, grad_weight, grad_bias \
= fused_mix_prec_layer_norm_cuda.backward_affine(
grad_output.contiguous(), mean, invvar,
input_, ctx.normalized_shape,
weight_, bias_, ctx.eps)
return grad_input, grad_weight, grad_bias, None, None
class MatmulWithAsyncCommunication(torch.autograd.Function):
"""
Linear layer execution with asynchronous communication in backprop.
"""
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce):
ctx.save_for_backward(input_, weight)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_allreduce = async_grad_allreduce
output = torch.matmul(input_, weight)
if bias is not None:
output = output + bias
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
use_bias = ctx.use_bias
total_input = input
grad_input = grad_output.matmul(weight.T)
grad_output = grad_output.contiguous()
# Convert the tensor shapes to 2D for execution compatibility
if len(grad_output.shape) > 2:
grad_output = grad_output.view(-1, grad_output.shape[-1])
total_input = total_input.view(-1, total_input.shape[-1])
if ctx.async_grad_allreduce:
# Asynchronous all-reduce
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
# Delay the start of weight gradient computation shortly (3us) to have
# all-reduce scheduled first and have GPU resources allocated
_ = torch.empty(1, device=grad_output.device) + 1
grad_weight = total_input.t().matmul(grad_output)
grad_bias = grad_output.sum(dim=0) if use_bias else None
if ctx.async_grad_allreduce:
handle.wait()
return grad_input, grad_weight, grad_bias, None, None, None
class LinearWithAsyncCommunication(torch.autograd.Function):
"""
Linear layer execution with asynchronous communication in backprop.
"""
@staticmethod
def forward(ctx, input_, weight, bias, process_group, async_grad_allreduce):
ctx.save_for_backward(input_, weight)
ctx.use_bias = bias is not None
ctx.process_group = process_group
ctx.async_grad_allreduce = async_grad_allreduce
if bias is not None:
output = F.linear(input_, weight, bias)
else:
output = F.linear(input_, weight)
return output
@staticmethod
def backward(ctx, grad_output):
input, weight = ctx.saved_tensors
use_bias = ctx.use_bias
total_input = input
grad_input = grad_output.matmul(weight)
grad_output = grad_output.contiguous()
# Convert the tensor shapes to 2D for execution compatibility
if len(grad_output.shape) > 2:
grad_output = grad_output.view(-1, grad_output.shape[-1])
total_input = total_input.view(-1, total_input.shape[-1])
if ctx.async_grad_allreduce:
# Asynchronous all-reduce
handle = dist.all_reduce(grad_input, group=ctx.process_group, async_op=True)
# Delay the start of weight gradient computation shortly (3us) to have
# all-reduce scheduled first and have GPU resources allocated
_ = torch.empty(1, device=grad_output.device) + 1
grad_weight = grad_output.t().matmul(total_input)
grad_bias = grad_output.sum(dim=0) if use_bias else None
if ctx.async_grad_allreduce:
handle.wait()
return grad_input, grad_weight, grad_bias, None, None, None
class _SplitForwardGatherBackward(torch.autograd.Function):
"""
Split the input and keep only the corresponding chuck to the rank.
Args:
input_ (`torch.Tensor`): input matrix.
dim (int): the dimension to perform split and gather
process_group (`torch.distributed.ProcessGroup`): the process group used for collective communication
"""
@staticmethod
def forward(ctx, input_, dim, process_group):
ctx.process_group = process_group
ctx.dim = dim
return _split(input_, dim, process_group)
@staticmethod
def backward(ctx, grad_output):
return _gather(grad_output, ctx.dim, ctx.process_group), None, None
class _ReduceForward(torch.autograd.Function):
"""
All-reduce the input from the model parallel region.
Args:
input_: input matrix.
parallel_mode: parallel mode.
"""
@staticmethod
def forward(ctx, input_, process_group):
return _reduce(input_, process_group)
@staticmethod
def backward(ctx, grad_output):
return grad_output, None
class _ReduceBackward(torch.autograd.Function):
"""
All-reduce the input from the model parallel region.
Args:
input_: input matrix.
parallel_mode: parallel mode.
"""
@staticmethod
def forward(ctx, input_, process_group):
ctx.process_group = process_group
return input_
@staticmethod
def backward(ctx, grad_output):
return _reduce(grad_output, ctx.process_group), None
def _reduce(input_, process_group):
# skip if only one rank involved
if dist.get_world_size(process_group) == 1:
return input_
else:
dist.all_reduce(input_, group=process_group)
return input_
def _split(input_, dim=-1, process_group=None):
# skip if only one rank involved
world_size = dist.get_world_size(process_group)
if world_size == 1:
return input_
# Split along last dimension.
dim_size = input_.size(dim)
assert dim_size % world_size == 0, \
f'The dimension to split ({dim_size}) is not a multiple of world size ({world_size}), ' \
f'cannot split tensor evenly'
tensor_list = torch.split(input_, dim_size // world_size, dim=dim)
rank = dist.get_rank(process_group)
output = tensor_list[rank].contiguous()
return output
def _gather(input_, dim=-1, process_group=None):
# skip if only one rank involved
world_size = dist.get_world_size(process_group)
if world_size == 1:
return input_
# all gather
rank = dist.get_rank(process_group)
tensor_list = [torch.empty_like(input_) for _ in range(world_size)]
tensor_list[rank] = input_
torch.distributed.all_gather(tensor_list, input_, group=process_group)
# concat
output = torch.cat(tensor_list, dim=dim).contiguous()
return output
class _GatherForwardSplitBackward(torch.autograd.Function):
"""Gather the input from model parallel region and concatenate.
Args:
input_: input matrix.
parallel_mode: parallel mode.
dim: dimension
"""
@staticmethod
def forward(ctx, input_, dim, process_group):
ctx.process_group = process_group
ctx.dim = dim
return _gather(input_, dim, process_group)
@staticmethod
def backward(ctx, grad_output):
return _split(grad_output, ctx.dim, ctx.process_group), None, None
def matmul_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce):
return MatmulWithAsyncCommunication.apply(input_, weight, bias, process_group, async_grad_allreduce)
def linear_with_async_comm(input_, weight, bias, process_group, async_grad_allreduce):
return LinearWithAsyncCommunication.apply(input_, weight, bias, process_group, async_grad_allreduce)
def gather_forward_split_backward(input_, dim, process_group):
return _GatherForwardSplitBackward.apply(input_, dim, process_group)
def split_forward_gather_backward(input_, dim, process_group):
return _SplitForwardGatherBackward.apply(input_, dim, process_group)
def reduce_forward(input_, process_group):
return _ReduceForward.apply(input_, process_group)
def reduce_backward(input_, process_group):
return _ReduceBackward.apply(input_, process_group)