|
|
"""
|
|
|
Multilingual retrieval based conversation system
|
|
|
"""
|
|
|
from typing import List
|
|
|
|
|
|
from colossalqa.data_loader.document_loader import DocumentLoader
|
|
|
from colossalqa.mylogging import get_logger
|
|
|
from colossalqa.retrieval_conversation_en import EnglishRetrievalConversation
|
|
|
from colossalqa.retrieval_conversation_zh import ChineseRetrievalConversation
|
|
|
from colossalqa.retriever import CustomRetriever
|
|
|
from colossalqa.text_splitter import ChineseTextSplitter
|
|
|
from colossalqa.utils import detect_lang_naive
|
|
|
from langchain.embeddings import HuggingFaceEmbeddings
|
|
|
from langchain.text_splitter import RecursiveCharacterTextSplitter, TextSplitter
|
|
|
|
|
|
logger = get_logger()
|
|
|
|
|
|
|
|
|
class UniversalRetrievalConversation:
|
|
|
"""
|
|
|
Wrapper class for bilingual retrieval conversation system
|
|
|
"""
|
|
|
|
|
|
def __init__(
|
|
|
self,
|
|
|
embedding_model_path: str = "moka-ai/m3e-base",
|
|
|
embedding_model_device: str = "cpu",
|
|
|
zh_model_path: str = None,
|
|
|
zh_model_name: str = None,
|
|
|
en_model_path: str = None,
|
|
|
en_model_name: str = None,
|
|
|
sql_file_path: str = None,
|
|
|
files_zh: List[List[str]] = None,
|
|
|
files_en: List[List[str]] = None,
|
|
|
text_splitter_chunk_size=100,
|
|
|
text_splitter_chunk_overlap=10,
|
|
|
) -> None:
|
|
|
"""
|
|
|
Warpper for multilingual retrieval qa class (Chinese + English)
|
|
|
Args:
|
|
|
embedding_model_path: local or huggingface embedding model
|
|
|
embedding_model_device:
|
|
|
files_zh: [[file_path, name_of_file, separator],...] defines the files used as supporting documents for Chinese retrieval QA
|
|
|
files_en: [[file_path, name_of_file, separator],...] defines the files used as supporting documents for English retrieval QA
|
|
|
"""
|
|
|
self.embedding = HuggingFaceEmbeddings(
|
|
|
model_name=embedding_model_path,
|
|
|
model_kwargs={"device": embedding_model_device},
|
|
|
encode_kwargs={"normalize_embeddings": False},
|
|
|
)
|
|
|
print("Select files for constructing Chinese retriever")
|
|
|
docs_zh = self.load_supporting_docs(
|
|
|
files=files_zh,
|
|
|
text_splitter=ChineseTextSplitter(
|
|
|
chunk_size=text_splitter_chunk_size, chunk_overlap=text_splitter_chunk_overlap
|
|
|
),
|
|
|
)
|
|
|
# Create retriever
|
|
|
self.information_retriever_zh = CustomRetriever(
|
|
|
k=3, sql_file_path=sql_file_path.replace(".db", "_zh.db"), verbose=True
|
|
|
)
|
|
|
self.information_retriever_zh.add_documents(
|
|
|
docs=docs_zh, cleanup="incremental", mode="by_source", embedding=self.embedding
|
|
|
)
|
|
|
|
|
|
print("Select files for constructing English retriever")
|
|
|
docs_en = self.load_supporting_docs(
|
|
|
files=files_en,
|
|
|
text_splitter=RecursiveCharacterTextSplitter(
|
|
|
chunk_size=text_splitter_chunk_size, chunk_overlap=text_splitter_chunk_overlap
|
|
|
),
|
|
|
)
|
|
|
# Create retriever
|
|
|
self.information_retriever_en = CustomRetriever(
|
|
|
k=3, sql_file_path=sql_file_path.replace(".db", "_en.db"), verbose=True
|
|
|
)
|
|
|
self.information_retriever_en.add_documents(
|
|
|
docs=docs_en, cleanup="incremental", mode="by_source", embedding=self.embedding
|
|
|
)
|
|
|
|
|
|
self.chinese_retrieval_conversation = ChineseRetrievalConversation.from_retriever(
|
|
|
self.information_retriever_zh, model_path=zh_model_path, model_name=zh_model_name
|
|
|
)
|
|
|
self.english_retrieval_conversation = EnglishRetrievalConversation.from_retriever(
|
|
|
self.information_retriever_en, model_path=en_model_path, model_name=en_model_name
|
|
|
)
|
|
|
self.memory = None
|
|
|
|
|
|
def load_supporting_docs(self, files: List[List[str]] = None, text_splitter: TextSplitter = None):
|
|
|
"""
|
|
|
Load supporting documents, currently, all documents will be stored in one vector store
|
|
|
"""
|
|
|
documents = []
|
|
|
if files:
|
|
|
for file in files:
|
|
|
retriever_data = DocumentLoader([[file["data_path"], file["name"]]]).all_data
|
|
|
splits = text_splitter.split_documents(retriever_data)
|
|
|
documents.extend(splits)
|
|
|
else:
|
|
|
while True:
|
|
|
file = input("Select a file to load or press Enter to exit:")
|
|
|
if file == "":
|
|
|
break
|
|
|
data_name = input("Enter a short description of the data:")
|
|
|
separator = input(
|
|
|
"Enter a separator to force separating text into chunks, if no separator is given, the defaut separator is '\\n\\n', press ENTER directly to skip:"
|
|
|
)
|
|
|
separator = separator if separator != "" else "\n\n"
|
|
|
retriever_data = DocumentLoader([[file, data_name.replace(" ", "_")]]).all_data
|
|
|
|
|
|
# Split
|
|
|
splits = text_splitter.split_documents(retriever_data)
|
|
|
documents.extend(splits)
|
|
|
return documents
|
|
|
|
|
|
def start_test_session(self):
|
|
|
"""
|
|
|
Simple multilingual session for testing purpose, with naive language selection mechanism
|
|
|
"""
|
|
|
while True:
|
|
|
user_input = input("User: ")
|
|
|
lang = detect_lang_naive(user_input)
|
|
|
if "END" == user_input:
|
|
|
print("Agent: Happy to chat with you :)")
|
|
|
break
|
|
|
agent_response = self.run(user_input, which_language=lang)
|
|
|
print(f"Agent: {agent_response}")
|
|
|
|
|
|
def run(self, user_input: str, which_language=str):
|
|
|
"""
|
|
|
Generate the response given the user input and a str indicates the language requirement of the output string
|
|
|
"""
|
|
|
assert which_language in ["zh", "en"]
|
|
|
if which_language == "zh":
|
|
|
agent_response, self.memory = self.chinese_retrieval_conversation.run(user_input, self.memory)
|
|
|
else:
|
|
|
agent_response, self.memory = self.english_retrieval_conversation.run(user_input, self.memory)
|
|
|
return agent_response.split("\n")[0]
|