mirror of https://github.com/hpcaitech/ColossalAI
2274 lines
87 KiB
Python
2274 lines
87 KiB
Python
import colossalai
|
|
import torch
|
|
import copy
|
|
from typing import List, Callable, Any, Tuple, Dict, Iterable
|
|
|
|
from torch.fx.node import Node, Argument, map_arg, _type_repr, _get_qualified_name
|
|
from torch.fx.graph import (
|
|
_Namespace,
|
|
PythonCode,
|
|
_custom_builtins,
|
|
_is_from_torch,
|
|
_format_target,
|
|
magic_methods,
|
|
CodeGen,
|
|
_origin_type_map,
|
|
inplace_methods,
|
|
_CustomBuiltin,
|
|
)
|
|
from colossalai.fx.profiler import (
|
|
calculate_fwd_out,
|
|
calculate_fwd_tmp,
|
|
parameter_size,
|
|
activation_size,
|
|
)
|
|
|
|
CODEGEN_AVAILABLE = True
|
|
__all__ = ["ChunkCodeGen"]
|
|
|
|
|
|
def _delete_free_var_from_last_use(user_to_last_uses):
|
|
for key, value in user_to_last_uses.items():
|
|
for n in value:
|
|
if n.op == "placeholder":
|
|
user_to_last_uses[key].remove(n)
|
|
|
|
|
|
def _get_node_shape(node):
|
|
if hasattr(node.meta["tensor_meta"], "shape"):
|
|
return node.meta["tensor_meta"].shape
|
|
return None
|
|
|
|
|
|
def _is_non_compute_node(node):
|
|
if any(i in node.op for i in ["placeholder", "get_attr", "output"]) or any(
|
|
i in node.name for i in ["getitem", "getattr"]
|
|
):
|
|
return True
|
|
return False
|
|
|
|
|
|
def _is_non_compute_node_except_placeholder(node):
|
|
if any(i in node.op for i in ["get_attr", "output"]) or any(
|
|
i in node.name for i in ["getitem", "getattr"]
|
|
):
|
|
return True
|
|
return False
|
|
|
|
|
|
def _is_non_compute_node_except_placeholder_output(node):
|
|
if any(i in node.op for i in ["get_attr"]) or any(
|
|
i in node.name for i in ["getitem", "getattr"]
|
|
):
|
|
return True
|
|
return False
|
|
|
|
|
|
class IndexTracer(object):
|
|
def __init__(self, node_list) -> None:
|
|
self.node_list = node_list
|
|
self.idx_trace_list = self._init_idx_trace_list()
|
|
self.idx_trace_equal = []
|
|
self.idx_view_list = {}
|
|
self.idx_count = -1
|
|
self.all_reorder_map = {i: i for i in range(len(self.idx_trace_list))}
|
|
|
|
def _init_idx_trace_list(self):
|
|
idx_trace_list = []
|
|
for n in self.node_list:
|
|
if _get_node_shape(n) != None:
|
|
cur_trace = {
|
|
"idx": [None for _ in range(len(_get_node_shape(n)))],
|
|
"compute": [[] for _ in range(len(_get_node_shape(n)))],
|
|
"source": [{} for _ in range(len(_get_node_shape(n)))],
|
|
}
|
|
else:
|
|
cur_trace = {"idx": [], "compute": [], "source": []}
|
|
idx_trace_list.append(cur_trace)
|
|
return idx_trace_list
|
|
|
|
def _add_index(self):
|
|
"""
|
|
Update the count and return it. To record the idx number.
|
|
|
|
Returns:
|
|
idx_count: int
|
|
"""
|
|
self.idx_count += 1
|
|
return self.idx_count
|
|
|
|
def _del_dim(self, idx, dim_idx):
|
|
self.idx_trace_list[idx]["idx"].pop(dim_idx)
|
|
self.idx_trace_list[idx]["compute"].pop(dim_idx)
|
|
self.idx_trace_list[idx]["source"].pop(dim_idx)
|
|
|
|
def _add_dim(self, node_idx, dim_idx):
|
|
self.idx_trace_list[node_idx]["idx"].insert(dim_idx, self._add_index())
|
|
self.idx_trace_list[node_idx]["compute"].insert(dim_idx, [])
|
|
self.idx_trace_list[node_idx]["source"].insert(dim_idx, {})
|
|
|
|
def _transform_index(self, node, node_dim):
|
|
node_idx = self._find_idx_trace_from_node(node)
|
|
dims = list(range(len(node_idx)))
|
|
return dims[node_dim]
|
|
|
|
def _inherit_index(self, node_from, node_from_dim, node_to, node_to_dim):
|
|
node_from_dim = self._transform_index(node_from, node_from_dim)
|
|
node_to_dim = self._transform_index(node_to, node_to_dim)
|
|
node_from_trace = self._find_trace_from_node(node_from)
|
|
node_to_trace = self._find_trace_from_node(node_to)
|
|
node_to_trace["idx"][node_to_dim] = node_from_trace["idx"][node_from_dim]
|
|
node_to_trace["compute"][node_to_dim] = copy.deepcopy(
|
|
node_from_trace["compute"][node_from_dim]
|
|
)
|
|
self._add_source(node_from, node_from_dim, node_to, node_to_dim, init=True)
|
|
|
|
def _inherit_all_computation(self, node_from, node_to):
|
|
node_from_compute = self._find_compute_trace_from_node(node_from)
|
|
node_to_compute = self._find_compute_trace_from_node(node_to)
|
|
assert len(node_from_compute) == len(node_to_compute)
|
|
for i in range(len(node_from_compute)):
|
|
self._add_source(node_from, i, node_to, i)
|
|
node_to_compute[i] = copy.deepcopy(node_from_compute[i])
|
|
|
|
def _add_source(self, node_from, node_from_dim, node_to, node_to_dim, init=False):
|
|
node_from_dim = self._transform_index(node_from, node_from_dim)
|
|
node_from_trace = self._find_trace_from_node(node_from)
|
|
node_to_dim = self._transform_index(node_to, node_to_dim)
|
|
node_to_trace = self._find_trace_from_node(node_to)
|
|
node_from_idx = _find_idx_by_name(node_from.name, self.node_list)
|
|
if init:
|
|
node_to_trace["source"][node_to_dim] = {}
|
|
# add dim to cur new source
|
|
if node_from_idx not in node_to_trace["source"][node_to_dim]:
|
|
node_to_trace["source"][node_to_dim][node_from_idx] = [node_from_dim]
|
|
else:
|
|
if node_from_dim not in node_to_trace["source"][node_to_dim][node_from_idx]:
|
|
node_to_trace["source"][node_to_dim][node_from_idx].append(
|
|
node_from_dim
|
|
)
|
|
# update inputs source
|
|
node_to_trace["source"][node_to_dim].update(
|
|
node_from_trace["source"][node_from_dim]
|
|
)
|
|
|
|
def _mark_computation_from_node(self, node_from, node_to, exclude=None):
|
|
if exclude == None:
|
|
exclude = []
|
|
else:
|
|
exclude = [self._transform_index(node_to, i) for i in exclude]
|
|
node_from_compute = self._find_compute_trace_from_node(node_from)
|
|
node_to_compute = self._find_compute_trace_from_node(node_to)
|
|
# assert len(node_from_compute) == len(node_to_compute)
|
|
for i in range(-1, -min(len(node_from_compute), len(node_to_compute)) - 1, -1):
|
|
if self._transform_index(node_to, i) in exclude:
|
|
continue
|
|
self._add_source(node_from, i, node_to, i)
|
|
for j in node_from_compute[i]:
|
|
if j not in node_to_compute[i]:
|
|
node_to_compute[i].append(j)
|
|
|
|
def _mark_idx_equal(self, node1, dim1, node2, dim2):
|
|
"""
|
|
Mark 2 index to be equal.
|
|
|
|
Args:
|
|
idx1 (int): index count.
|
|
idx2 (int): index count.
|
|
"""
|
|
# node1_idx = _find_idx_by_name(node1.name, self.nodes_list)
|
|
# node2_idx = _find_idx_by_name(node2.name, self.nodes_list)
|
|
# if node1_idx > node2_idx:
|
|
# self._add_source(node2, dim2, node1, dim1)
|
|
# else:
|
|
# self._add_source(node1, dim1, node2, dim2)
|
|
|
|
def _mark_computation(self, node, idx, dim):
|
|
"""
|
|
Mark some dims of node as computed.
|
|
|
|
Args:
|
|
node (node)
|
|
idx (int): node index
|
|
dim (list or int): dims to be marked as computed
|
|
"""
|
|
if isinstance(dim, int):
|
|
dim = [dim]
|
|
dims = list(range(len(_get_node_shape(node))))
|
|
for d in dim:
|
|
cur_dim = dims[d]
|
|
if idx not in self.idx_trace_list[idx]["compute"][cur_dim]:
|
|
self.idx_trace_list[idx]["compute"][cur_dim].append(idx)
|
|
|
|
def _find_trace_from_node(self, node):
|
|
"""
|
|
Find node idx and compute trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
idx (list): idx of the node
|
|
compute (list): computed idx of the node.
|
|
"""
|
|
node_idx = _find_idx_by_name(node.name, self.node_list)
|
|
node_dict = self.idx_trace_list[node_idx]
|
|
return node_dict
|
|
|
|
def _find_source_trace_from_node(self, node):
|
|
"""
|
|
Find node source trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
idx (list): idx of the node
|
|
compute (list): computed idx of the node.
|
|
"""
|
|
node_idx = _find_idx_by_name(node.name, self.node_list)
|
|
node_dict = self.idx_trace_list[node_idx]
|
|
return node_dict["source"]
|
|
|
|
def _find_idx_trace_from_node(self, node):
|
|
"""
|
|
Find node idx trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
idx (list): idx of the node
|
|
"""
|
|
node_idx = _find_idx_by_name(node.name, self.node_list)
|
|
return self.idx_trace_list[node_idx]["idx"]
|
|
|
|
def _find_compute_trace_from_node(self, node):
|
|
"""
|
|
Find node compute trace by the node.
|
|
|
|
Args:
|
|
node (node)
|
|
Returns:
|
|
compute (list): computed idx of the node.
|
|
"""
|
|
node_idx = _find_idx_by_name(node.name, self.node_list)
|
|
return self.idx_trace_list[node_idx]["compute"]
|
|
|
|
def _assign_index_as_input(self, node, node_idx, input_node=None):
|
|
"""
|
|
Assign node's trace as its input node.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
if input_node == None:
|
|
input_node = node.args[0]
|
|
input_node_idx = _find_idx_by_name(input_node.name, self.node_list)
|
|
input_node_idx_trace = self.idx_trace_list[input_node_idx]["idx"]
|
|
|
|
new_idx_trace = copy.deepcopy(input_node_idx_trace)
|
|
self.idx_trace_list[node_idx]["idx"] = new_idx_trace
|
|
|
|
self._inherit_all_computation(input_node, node)
|
|
|
|
def _assign_all_index(self, node, node_idx):
|
|
"""
|
|
Add new index for all node's dims.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
shape = node.meta["tensor_meta"].shape
|
|
new_trace = []
|
|
for _ in shape:
|
|
new_trace.append(self._add_index())
|
|
self.idx_trace_list[node_idx]["idx"] = new_trace
|
|
|
|
def _assign_transpose_index(self, node, node_idx):
|
|
"""
|
|
Assign index for transpose op.
|
|
1. swap input's dim according to transpose args
|
|
2. inherit input's computation
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
input_node = node.args[0]
|
|
tranpose_dim = node.args[1:]
|
|
|
|
self._assign_index_as_input(node, node_idx, input_node)
|
|
self._inherit_index(input_node, tranpose_dim[1], node, tranpose_dim[0])
|
|
self._inherit_index(input_node, tranpose_dim[0], node, tranpose_dim[1])
|
|
|
|
def _assign_permute_index(self, node, node_idx):
|
|
"""
|
|
Assign index for permute op.
|
|
1. swap input's dim according to permute args
|
|
2. inherit input's computation
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
permute_dim = node.args[1:]
|
|
input_node = node.args[0]
|
|
|
|
self._assign_index_as_input(node, node_idx, input_node)
|
|
for idx, d in enumerate(permute_dim):
|
|
self._inherit_index(input_node, d, node, idx)
|
|
|
|
def _assign_linear_index(self, node, node_idx):
|
|
"""
|
|
Assign index for linear op.
|
|
1. copy trace from input node and change last index accroding to weight
|
|
2. mark equal for input node last index, weight first dim and bias dim.
|
|
3. inherit input's computation, mark computation for last dim.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
if len(node.args) == 2:
|
|
input_node, weight = node.args
|
|
bias = None
|
|
else:
|
|
input_node, weight, bias = node.args
|
|
|
|
self._assign_index_as_input(node, node_idx)
|
|
self._inherit_index(weight, 1, node, -1)
|
|
|
|
self._mark_computation(node, node_idx, [-1])
|
|
self._mark_idx_equal(input_node, -1, weight, 0)
|
|
|
|
if bias:
|
|
self._mark_idx_equal(input_node, -1, bias, 0)
|
|
|
|
def _assign_matmul_index(self, node, node_idx):
|
|
"""
|
|
Assign index for matmul op.
|
|
1. copy trace from matmul_left and change last index accroding to matmul_right. (assert they have same length)
|
|
2. mark equal for input matmul_left -1 index and matmul_right -2 dim.
|
|
3. inherit matmul_left and matmul_right computation, mark computation for last dim.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
matmul_left, matmul_right = node.args
|
|
|
|
assert len(_get_node_shape(matmul_left)) == len(_get_node_shape(matmul_right))
|
|
self._assign_index_as_input(node, node_idx, matmul_left)
|
|
self._inherit_index(matmul_right, -1, node, -1)
|
|
|
|
self._mark_computation_from_node(matmul_right, node, [-1, -2])
|
|
self._mark_computation(node, node_idx, [-1])
|
|
self._mark_idx_equal(matmul_left, -1, matmul_right, -2)
|
|
|
|
def _assign_layernorm_index(self, node, idx):
|
|
"""
|
|
Assign index for layernorm op.
|
|
1. assign index as input node
|
|
2. inherit computation and mark last 2 dims as computed.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_index_as_input(node, idx)
|
|
self._mark_computation(node, idx, [-1])
|
|
|
|
def _assign_elementwise_index(self, node, idx):
|
|
"""
|
|
Assign index for element-wise op (eg. relu sigmoid add mul).
|
|
1. assign index as input node
|
|
2. inherit computation from all input nodes.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_index_as_input(node, idx)
|
|
nodes_in = []
|
|
for node_in in node.args:
|
|
if type(node_in) == type(node):
|
|
nodes_in.append(node_in)
|
|
self._mark_computation_from_node(node_in, node)
|
|
assert len(nodes_in) <= 2
|
|
if len(nodes_in) == 2:
|
|
node_in0_shape = _get_node_shape(nodes_in[0])
|
|
node_in1_shape = _get_node_shape(nodes_in[1])
|
|
for i in range(-1, -min(len(node_in0_shape), len(node_in1_shape)) - 1, -1):
|
|
if node_in0_shape[i] == node_in1_shape[i]:
|
|
self._mark_idx_equal(nodes_in[0], i, nodes_in[1], i)
|
|
|
|
def _assgin_no_change_index(self, node, idx):
|
|
self._assign_index_as_input(node, idx)
|
|
for node_in in node.args:
|
|
if type(node_in) == type(node):
|
|
self._mark_computation_from_node(node_in, node)
|
|
|
|
def _assign_einsum_index(self, node, idx):
|
|
"""
|
|
Assign index for einsum op.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
patterns = node.args[0]
|
|
input_nodes = node.args[1:]
|
|
|
|
patterns = patterns.replace(" ", "")
|
|
left, right = patterns.split("->")
|
|
left = left.split(",")
|
|
|
|
all_index = []
|
|
for i in left:
|
|
for c in i:
|
|
all_index.append(c)
|
|
all_index = set(all_index)
|
|
free_index = set([i for i in right])
|
|
sum_index = all_index - free_index
|
|
|
|
for right_idx, right_indice in enumerate(right):
|
|
for left_idx, left_str in enumerate(left):
|
|
if right_indice in left_str:
|
|
source_idx = left_str.index(right_indice)
|
|
self._inherit_index(
|
|
input_nodes[left_idx], source_idx, node, right_idx
|
|
)
|
|
|
|
# for i in sum_index:
|
|
# for left_idx, left_str in enumerate(left):
|
|
# if i in left_str:
|
|
# self._mark_computation(node, idx, left_str.index(i))
|
|
# break
|
|
|
|
def _assign_softmax_index(self, node, idx):
|
|
"""
|
|
Assign index for softmax op.
|
|
1. assign index as input node
|
|
2. inherit computation and mark softmax dim as computed.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_index_as_input(node, idx)
|
|
self._mark_computation(node, idx, [node.kwargs["dim"]])
|
|
|
|
def _assign_unsqueeze_index(self, node, node_idx):
|
|
"""
|
|
Assign index for unsqueeze op.
|
|
1. assign new index for unsqueeze dim
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._del_dim(node_idx, -1)
|
|
self._assign_index_as_input(node, node_idx)
|
|
self._add_dim(node_idx, node.args[1])
|
|
|
|
def _assign_dropout_index(self, node, node_idx):
|
|
"""
|
|
Assign index for unsqueeze op.
|
|
1. assign new index for unsqueeze dim
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_index_as_input(node, node_idx)
|
|
|
|
def _assign_ones_like_index(self, node, node_idx):
|
|
"""
|
|
Assign index for oneslike op.
|
|
1. assign new index for all dim
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
self._assign_all_index(node, node_idx)
|
|
|
|
def _assign_view_reshape_index(self, node, node_idx):
|
|
"""
|
|
Assign index for view and reshape op.
|
|
1. get origin shape and target shape by meta info.
|
|
2. compute the real value of -1 in target shape.
|
|
3. determine changed dim, and assgin index for generated dim.
|
|
4. log changed dim and generated dim for restore
|
|
5. inherit computation.
|
|
6. TODO: look into view list to see whether the view is associated with other,
|
|
if so assgin equal dim according to previous view.
|
|
|
|
Args:
|
|
node (node)
|
|
node_idx (int)
|
|
"""
|
|
# get data, turn into number
|
|
origin_node = node.args[0]
|
|
origin_shape = origin_node.meta["tensor_meta"].shape
|
|
target_shape = []
|
|
for i in range(1, len(node.args)):
|
|
if isinstance(node.args[i], int):
|
|
target_shape.append(node.args[i])
|
|
else:
|
|
target_shape.append(node.args[i].meta["fwd_out"][0])
|
|
|
|
# compute the value of -1
|
|
if -1 in target_shape:
|
|
origin_product = 1
|
|
for i in origin_shape:
|
|
origin_product *= i
|
|
target_product = -1
|
|
for i in target_shape:
|
|
target_product *= i
|
|
shape_idx = target_shape.index(-1)
|
|
target_shape[shape_idx] = origin_product // target_product
|
|
|
|
# determine changed dim
|
|
len_diff = len(origin_shape) - len(target_shape)
|
|
if len_diff == 1:
|
|
# dim merge
|
|
dim_equal = [i == j for i, j in zip(origin_shape[:-1], target_shape)]
|
|
dim_to = [dim_equal.index(False)]
|
|
dim_from = [dim_equal.index(False), dim_equal.index(False) + 1]
|
|
self._add_dim(node_idx, -1)
|
|
elif len_diff == -1:
|
|
# dim expand
|
|
dim_equal = [i == j for i, j in zip(origin_shape, target_shape[:-1])]
|
|
dim_from = [dim_equal.index(False)]
|
|
dim_to = [dim_equal.index(False), dim_equal.index(False) + 1]
|
|
self._del_dim(node_idx, -1)
|
|
else:
|
|
raise NotImplementedError(
|
|
"shape"
|
|
+ str(origin_shape)
|
|
+ "and"
|
|
+ str(target_shape)
|
|
+ "view not implemented"
|
|
)
|
|
|
|
# get new index
|
|
origin_trace = self._find_idx_trace_from_node(origin_node)
|
|
self._assign_index_as_input(node, node_idx, origin_node)
|
|
dim_from.reverse()
|
|
for i in dim_from:
|
|
self._del_dim(node_idx, i)
|
|
for i in dim_to:
|
|
self._add_dim(node_idx, i)
|
|
|
|
# inherit computation
|
|
compute_log = self._find_compute_trace_from_node(origin_node)
|
|
for i in dim_from:
|
|
if origin_trace[i] in compute_log:
|
|
for j in dim_to:
|
|
self._mark_computation(node, node_idx, [j])
|
|
break
|
|
|
|
# log view, not used now
|
|
view_dict = {
|
|
"idx_from": [origin_trace[i] for i in dim_from],
|
|
"dim_from": dim_from,
|
|
"idx_to": [self.idx_trace_list[node_idx]["idx"][i] for i in dim_to],
|
|
"dim_to": dim_to,
|
|
}
|
|
self.idx_view_list[node] = view_dict
|
|
|
|
def _merge_equal_idx(self):
|
|
idx_equal = copy.deepcopy(self.idx_trace_equal)
|
|
idx_equal.reverse()
|
|
for idx in idx_equal:
|
|
merge_to = min(idx)
|
|
merge_from = max(idx)
|
|
for trace in self.idx_trace_list:
|
|
if merge_from in trace["idx"]:
|
|
trace["idx"] = [
|
|
merge_to if i == merge_from else i for i in trace["idx"]
|
|
]
|
|
|
|
def trace_index(self):
|
|
for idx, node in enumerate(self.node_list):
|
|
if node.op == "placeholder":
|
|
self._assign_all_index(node, idx)
|
|
elif node.op == "call_method":
|
|
if "transpose" in node.name:
|
|
self._assign_transpose_index(node, idx)
|
|
elif "permute" in node.name:
|
|
self._assign_permute_index(node, idx)
|
|
elif "view" in node.name or "reshape" in node.name:
|
|
self._assign_view_reshape_index(node, idx)
|
|
elif "unsqueeze" in node.name:
|
|
self._assign_unsqueeze_index(node, idx)
|
|
elif any(i in node.name for i in ["to", "contiguous"]):
|
|
self._assgin_no_change_index(node, idx)
|
|
else:
|
|
raise NotImplementedError(node.name, "method not implemented yet!")
|
|
elif node.op == "call_function":
|
|
if "linear" in node.name:
|
|
self._assign_linear_index(node, idx)
|
|
elif "matmul" in node.name:
|
|
self._assign_matmul_index(node, idx)
|
|
elif "softmax" in node.name:
|
|
self._assign_softmax_index(node, idx)
|
|
elif any(n in node.name for n in ["mul", "add", "sigmoid", "relu"]):
|
|
self._assign_elementwise_index(node, idx)
|
|
elif "ones_like" in node.name:
|
|
self._assign_ones_like_index(node, idx)
|
|
elif "dropout" in node.name:
|
|
self._assign_dropout_index(node, idx)
|
|
elif "einsum" in node.name:
|
|
self._assign_einsum_index(node, idx)
|
|
elif "getattr" in node.name:
|
|
continue # get attr like shape
|
|
elif "getitem" in node.name:
|
|
continue # get item in list
|
|
else:
|
|
raise NotImplementedError(
|
|
node.name, "function not implemented yet!"
|
|
)
|
|
elif node.op == "call_module":
|
|
if any(n in node.name for n in ["layernorm", "norm"]):
|
|
self._assign_layernorm_index(node, idx)
|
|
else:
|
|
raise NotImplementedError(node.name, "module not implemented yet!")
|
|
elif node.op == "get_attr":
|
|
self._assign_all_index(node, idx) # get param
|
|
elif node.op == "output":
|
|
continue
|
|
else:
|
|
raise NotImplementedError(node.op, "op not implemented yet!")
|
|
# self._merge_equal_idx()
|
|
|
|
def check_index_source(self, start_dim, start_node, start_idx, end_dim, end_node):
|
|
"""
|
|
Check 2 given index: one index should be source of the other
|
|
Args:
|
|
start_idx(int): start node chunk dim
|
|
start_node(node): start node
|
|
end_idx(int): end node chunk dim
|
|
end_node(node): end node
|
|
|
|
Returns:
|
|
bool: True if check pass
|
|
"""
|
|
start_node_idx = _find_idx_by_name(start_node.name, self.node_list)
|
|
end_node_trace = self._find_trace_from_node(end_node)
|
|
end_node_trace_source = end_node_trace["source"][end_dim]
|
|
sorted_source = sorted(
|
|
end_node_trace_source.items(), key=lambda d: d[0], reverse=True
|
|
)
|
|
for node_idx, node_dim in sorted_source:
|
|
if node_idx == start_node_idx and start_dim in node_dim:
|
|
return True
|
|
# it means we meet a node outside the loop, and the node is not input node
|
|
if node_idx < start_idx:
|
|
return False
|
|
return False
|
|
|
|
def check_index_compute(self, start_idx, end_dim, end_node, end_idx):
|
|
"""
|
|
Check 2 given index: check they haven't been computed in the source trace.
|
|
Args:
|
|
start_idx(int): start node chunk dim
|
|
start_node(node): start node
|
|
end_idx(int): end node chunk dim
|
|
end_node(node): end node
|
|
|
|
Returns:
|
|
bool: True if check pass
|
|
"""
|
|
end_node_trace = self._find_trace_from_node(end_node)
|
|
end_node_compute = end_node_trace["compute"][end_dim]
|
|
if any(start_idx <= i <= end_idx for i in end_node_compute):
|
|
return False
|
|
return True
|
|
|
|
def get_node_chunk_dim(self, node_from, node_from_dim, node_to):
|
|
node_from_source = self._find_source_trace_from_node(node_from)
|
|
dim_source = node_from_source[node_from_dim]
|
|
node_to_idx = _find_idx_by_name(node_to.name, self.node_list)
|
|
for k, v in dim_source.items():
|
|
if k == node_to_idx:
|
|
return v
|
|
return None
|
|
|
|
def _find_inherit_dim(self, input_node, input_dim, node):
|
|
input_node_idx = _find_idx_by_name(input_node.name, self.node_list)
|
|
node_trace_source = self._find_source_trace_from_node(node)
|
|
for node_dim in range(len(_get_node_shape(node))):
|
|
if (
|
|
input_node_idx in node_trace_source[node_dim]
|
|
and input_dim[0] in node_trace_source[node_dim][input_node_idx]
|
|
):
|
|
return node_dim
|
|
return None
|
|
|
|
def check_index_duplicate(self, chunk_infos, return_dim=False):
|
|
input_dim_after_node = {}
|
|
for input_node_idx, input_node in enumerate(chunk_infos["inputs"]):
|
|
for k, v in chunk_infos["inputs_dim"][input_node_idx].items():
|
|
inherit_dim = self._find_inherit_dim(input_node, v, self.node_list[k])
|
|
if inherit_dim:
|
|
input_dim_after_node[k] = inherit_dim
|
|
|
|
for node in self.node_list[
|
|
chunk_infos["region"][0] : chunk_infos["region"][1] + 1
|
|
]:
|
|
if _is_non_compute_node_except_placeholder(node):
|
|
continue
|
|
count = 0
|
|
duplicate_dims = []
|
|
node_trace_source = self._find_source_trace_from_node(node)
|
|
for node_dim in range(len(_get_node_shape(node))):
|
|
duplicate_dim = []
|
|
duplicate_flag = False
|
|
dim_source = node_trace_source[node_dim]
|
|
for k, v in dim_source.items():
|
|
if chunk_infos["region"][0] <= k <= chunk_infos["region"][1]:
|
|
if k in input_dim_after_node and input_dim_after_node[k] in v:
|
|
duplicate_flag = True
|
|
duplicate_dim.append((k, v))
|
|
duplicate_dims.append(duplicate_dim)
|
|
if duplicate_flag:
|
|
count += 1
|
|
|
|
if count > 1:
|
|
if return_dim:
|
|
return False, duplicate_dims
|
|
else:
|
|
return False
|
|
if return_dim:
|
|
return True, None
|
|
else:
|
|
return True
|
|
|
|
def _assgin_single_node_flow(
|
|
self,
|
|
arg_node,
|
|
start_idx,
|
|
end_idx,
|
|
cur_node_dim,
|
|
cur_node_compute,
|
|
cur_node_source,
|
|
cur_node_fix_dim,
|
|
all_node_info,
|
|
next_node_list,
|
|
):
|
|
arg_idx = _find_idx_by_name(arg_node.name, self.node_list)
|
|
# arg in chunk range or be inputs
|
|
if not (start_idx <= arg_idx < end_idx):
|
|
return True
|
|
|
|
# find arg dim
|
|
if cur_node_dim is not None:
|
|
# dim is computed
|
|
if arg_idx in cur_node_compute[cur_node_dim]:
|
|
return False
|
|
if arg_idx not in cur_node_source[cur_node_dim]:
|
|
arg_dim = None
|
|
else:
|
|
arg_dim = cur_node_source[cur_node_dim][arg_idx][0]
|
|
else:
|
|
arg_dim = None
|
|
|
|
# get fix dim
|
|
arg_fix_dim = []
|
|
if cur_node_dim is not None:
|
|
for i in cur_node_fix_dim:
|
|
fix_dim_source = cur_node_source[i]
|
|
if arg_idx in fix_dim_source:
|
|
arg_fix_dim.append(fix_dim_source[arg_idx][0])
|
|
|
|
# if already in node_info, arg dim must be same
|
|
if arg_node in all_node_info:
|
|
if all_node_info[arg_node]["chunk_dim"] != arg_dim:
|
|
return False
|
|
all_node_info[arg_node]["fix_dim"] = list(
|
|
set(all_node_info[arg_node]["fix_dim"] + arg_fix_dim)
|
|
)
|
|
# else add it to list
|
|
else:
|
|
all_node_info[arg_node] = {"chunk_dim": arg_dim, "fix_dim": arg_fix_dim}
|
|
|
|
next_node_list.append(arg_node)
|
|
return True
|
|
|
|
def flow_search(self, start_idx, start_dim, end_idx, end_dim):
|
|
inputs, outputs = _find_chunk_compute_input_and_output_nodes(
|
|
self.node_list[start_idx : end_idx + 1]
|
|
)
|
|
# only single ouput
|
|
if len(outputs) > 1:
|
|
return None
|
|
|
|
cur_node_list = [self.node_list[end_idx]] # start from the last node
|
|
all_node_info = {cur_node_list[0]: {"chunk_dim": end_dim, "fix_dim": []}}
|
|
|
|
while len(cur_node_list) > 0:
|
|
next_node_list = []
|
|
|
|
for cur_node in cur_node_list:
|
|
# get cur node info
|
|
cur_node_chunk_dim = all_node_info[cur_node]["chunk_dim"]
|
|
cur_node_fix_dim = all_node_info[cur_node]["fix_dim"]
|
|
cur_node_idx = _find_idx_by_name(cur_node.name, self.node_list)
|
|
if cur_node_chunk_dim:
|
|
cur_node_compute = self._find_compute_trace_from_node(cur_node)
|
|
cur_node_source = self._find_source_trace_from_node(cur_node)
|
|
else:
|
|
cur_node_compute = cur_node_source = None
|
|
|
|
# get all valid args
|
|
arg_list = []
|
|
for arg in cur_node.args:
|
|
if type(arg) != type(cur_node):
|
|
continue
|
|
if _is_non_compute_node(arg):
|
|
continue
|
|
arg_list.append(arg)
|
|
flow_flag = self._assgin_single_node_flow(
|
|
arg,
|
|
start_idx,
|
|
end_idx,
|
|
cur_node_chunk_dim,
|
|
cur_node_compute,
|
|
cur_node_source,
|
|
cur_node_fix_dim,
|
|
all_node_info,
|
|
next_node_list,
|
|
)
|
|
if flow_flag == False:
|
|
return None
|
|
|
|
if len(arg_list) == 2:
|
|
if any(i in cur_node.name for i in ["add", "mul"]):
|
|
for arg in arg_list:
|
|
if not (
|
|
start_idx
|
|
<= _find_idx_by_name(arg.name, self.node_list)
|
|
< end_idx
|
|
):
|
|
continue
|
|
arg_chunk_dim = all_node_info[arg]["chunk_dim"]
|
|
arg_fix_dim = all_node_info[arg]["fix_dim"]
|
|
arg_shape = _get_node_shape(arg)
|
|
# add all dim as fix dim except chunk dim
|
|
for i, shape in enumerate(arg_shape):
|
|
if shape != 1 and i != cur_node_chunk_dim:
|
|
if i == arg_chunk_dim:
|
|
return None
|
|
if i not in arg_fix_dim:
|
|
arg_fix_dim.append(i)
|
|
elif "einsum" in cur_node.name:
|
|
pass
|
|
elif "matmul" in cur_node.name:
|
|
pass
|
|
else:
|
|
raise NotImplementedError()
|
|
cur_node_list = next_node_list
|
|
|
|
inputs_dim = []
|
|
remove_inputs = []
|
|
for input_node in inputs:
|
|
input_dict = {}
|
|
input_node_idx = _find_idx_by_name(input_node.name, self.node_list)
|
|
for user in input_node.users.keys():
|
|
if _is_non_compute_node(user):
|
|
continue
|
|
user_idx = _find_idx_by_name(user.name, self.node_list)
|
|
if start_idx <= user_idx <= end_idx:
|
|
chunk_dim = all_node_info[user]["chunk_dim"]
|
|
if chunk_dim is not None:
|
|
user_source = self._find_source_trace_from_node(user)[chunk_dim]
|
|
if input_node_idx in user_source:
|
|
input_dict[user_idx] = user_source[input_node_idx]
|
|
else:
|
|
return None
|
|
if len(input_dict) == 0:
|
|
remove_inputs.append(input_node)
|
|
else:
|
|
inputs_dim.append(input_dict)
|
|
for i in remove_inputs:
|
|
if i in inputs:
|
|
inputs.remove(i)
|
|
|
|
chunk_info = {
|
|
"region": (start_idx, end_idx),
|
|
"inputs": inputs,
|
|
"inputs_non_chunk": [],
|
|
"inputs_dim": inputs_dim,
|
|
"outputs": outputs,
|
|
"outputs_dim": end_dim,
|
|
"node_chunk_dim": all_node_info,
|
|
"args": {},
|
|
}
|
|
|
|
# move useless nodes ahead of loop
|
|
# get all possible prepose nodes
|
|
maybe_prepose_nodes = []
|
|
for node, node_info in all_node_info.items():
|
|
if node_info["chunk_dim"] is None:
|
|
maybe_prepose_nodes.append(node)
|
|
maybe_prepose_nodes.sort(
|
|
key=lambda x: _find_idx_by_name(x.name, self.node_list),
|
|
reverse=True,
|
|
) # from last node to first node
|
|
prepose_nodes = []
|
|
# set every node as root, search its args, if all legal, turn root and args as prepose nodes
|
|
while len(maybe_prepose_nodes) > 0:
|
|
tmp_cur_prepose_nodes = [maybe_prepose_nodes[0]]
|
|
tmp_cur_related_prepose_nodes = []
|
|
prepose_flag = True
|
|
|
|
# loop cur node's all arg until out of chunk
|
|
while len(tmp_cur_prepose_nodes) > 0:
|
|
if prepose_flag == False:
|
|
break
|
|
tmp_next_prepose_nodes = []
|
|
tmp_cur_related_prepose_nodes.extend(tmp_cur_prepose_nodes)
|
|
for cur_prepose_node in tmp_cur_prepose_nodes:
|
|
if prepose_flag == False:
|
|
break
|
|
for cur_prepose_node_arg in cur_prepose_node.args:
|
|
if type(cur_prepose_node_arg) != type(cur_prepose_node):
|
|
continue
|
|
# out of loop
|
|
if not (
|
|
start_idx
|
|
<= _find_idx_by_name(
|
|
cur_prepose_node_arg.name, self.node_list
|
|
)
|
|
< end_idx
|
|
):
|
|
continue
|
|
# compute op in loop
|
|
elif cur_prepose_node_arg in all_node_info:
|
|
if all_node_info[cur_prepose_node_arg]["chunk_dim"] is None:
|
|
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
|
|
else:
|
|
prepose_flag = False
|
|
break
|
|
# non compute op
|
|
else:
|
|
tmp_next_prepose_nodes.append(cur_prepose_node_arg)
|
|
tmp_cur_prepose_nodes = tmp_next_prepose_nodes
|
|
|
|
if prepose_flag == False:
|
|
maybe_prepose_nodes.remove(maybe_prepose_nodes[0])
|
|
continue
|
|
else:
|
|
for n in tmp_cur_related_prepose_nodes:
|
|
if n not in prepose_nodes:
|
|
prepose_nodes.append(n)
|
|
if n in maybe_prepose_nodes:
|
|
maybe_prepose_nodes.remove(n)
|
|
# sort by index
|
|
prepose_nodes.sort(key=lambda x: _find_idx_by_name(x.name, self.node_list))
|
|
chunk_info["args"]["prepose_nodes"] = prepose_nodes
|
|
|
|
# we need to log input nodes to avoid deleteing them in the loop
|
|
chunk_node_list = self.node_list[start_idx : end_idx + 1]
|
|
# also need to get some prepose node's arg out of non_chunk_inputs
|
|
for n in prepose_nodes:
|
|
chunk_node_list.remove(n)
|
|
non_chunk_inputs = _find_chunk_all_input_nodes(chunk_node_list)
|
|
for i in non_chunk_inputs:
|
|
if i not in chunk_info["inputs"]:
|
|
chunk_info["inputs_non_chunk"].append(i)
|
|
|
|
# reassgin reshape size, some size may have changed due to chunk
|
|
chunk_info = self._reassgin_reshape_size(chunk_info)
|
|
|
|
return chunk_info
|
|
|
|
def _reassgin_reshape_size(self, chunk_info):
|
|
chunk_region = chunk_info["region"]
|
|
reshape_size = {}
|
|
chunk_shape = _get_node_shape(chunk_info["outputs"][0])[
|
|
chunk_info["outputs_dim"]
|
|
]
|
|
for node in self.node_list[chunk_region[0] : chunk_region[1] + 1]:
|
|
if any(i in node.name for i in ["reshape", "view"]):
|
|
reshape_args = node.args[1:]
|
|
reshape_log = self.idx_view_list[node]
|
|
chunk_dim = chunk_info["node_chunk_dim"][node]["chunk_dim"]
|
|
reshape_size[node.name] = {}
|
|
for reshape_arg_dim, reshape_arg in enumerate(reshape_args):
|
|
if reshape_arg_dim in reshape_log["dim_to"]:
|
|
continue
|
|
if reshape_arg_dim == chunk_dim:
|
|
reshape_size[node.name][reshape_arg.name] = (
|
|
"min(chunk_size, %d - chunk_idx)" % chunk_shape
|
|
)
|
|
chunk_info["reshape_size"] = reshape_size
|
|
return chunk_info
|
|
|
|
def _get_reorder_map(self, chunk_info):
|
|
reorder_map = {i: i for i in range(len(self.node_list))}
|
|
|
|
chunk_region_start = chunk_info["region"][0]
|
|
chunk_region_end = chunk_info["region"][1]
|
|
chunk_prepose_nodes = chunk_info["args"]["prepose_nodes"]
|
|
chunk_prepose_nodes_idx = [
|
|
_find_idx_by_name(i.name, self.node_list) for i in chunk_prepose_nodes
|
|
]
|
|
# put prepose nodes ahead
|
|
for idx, n in enumerate(chunk_prepose_nodes):
|
|
n_idx = chunk_prepose_nodes_idx[idx]
|
|
reorder_map[n_idx] = chunk_region_start + idx
|
|
# put other nodes after prepose nodes
|
|
for n in self.node_list[chunk_region_start : chunk_region_end + 1]:
|
|
if n in chunk_prepose_nodes:
|
|
continue
|
|
n_idx = _find_idx_by_name(n.name, self.node_list)
|
|
pos = sum([n_idx < i for i in chunk_prepose_nodes_idx])
|
|
reorder_map[n_idx] = n_idx + pos
|
|
|
|
return reorder_map
|
|
|
|
def _reorder_chunk_info(self, chunk_info, reorder_map):
|
|
# update chunk info
|
|
chunk_info["region"] = (
|
|
chunk_info["region"][0] + len(chunk_info["args"]["prepose_nodes"]),
|
|
chunk_info["region"][1],
|
|
)
|
|
for idx, input_dim in enumerate(chunk_info["inputs_dim"]):
|
|
new_input_dim = {}
|
|
for k, v in input_dim.items():
|
|
new_input_dim[reorder_map[k]] = v
|
|
chunk_info["inputs_dim"][idx] = new_input_dim
|
|
return chunk_info
|
|
|
|
def _update_all_reorder_map(self, reorder_map):
|
|
for origin_idx, map_idx in self.all_reorder_map.items():
|
|
self.all_reorder_map[origin_idx] = reorder_map[map_idx]
|
|
|
|
def _reorder_self_node_list(self, reorder_map):
|
|
new_node_list = [None for _ in range(len(self.node_list))]
|
|
for old_idx, new_idx in reorder_map.items():
|
|
new_node_list[new_idx] = self.node_list[old_idx]
|
|
self.node_list = new_node_list
|
|
|
|
def _reorder_idx_trace(self, reorder_map):
|
|
# reorder list
|
|
new_idx_trace_list = [None for _ in range(len(self.idx_trace_list))]
|
|
for old_idx, new_idx in reorder_map.items():
|
|
new_idx_trace_list[new_idx] = self.idx_trace_list[old_idx]
|
|
self.idx_trace_list = new_idx_trace_list
|
|
# update compute
|
|
for idx_trace in self.idx_trace_list:
|
|
compute = idx_trace["compute"]
|
|
for dim_compute in compute:
|
|
for idx, i in enumerate(dim_compute):
|
|
dim_compute[idx] = reorder_map[i]
|
|
# update source
|
|
for idx_trace in self.idx_trace_list:
|
|
source = idx_trace["source"]
|
|
for dim_idx, dim_source in enumerate(source):
|
|
new_dim_source = {}
|
|
for k, v in dim_source.items():
|
|
new_dim_source[reorder_map[k]] = v
|
|
source[dim_idx] = new_dim_source
|
|
|
|
def reorder_all(self, chunk_info):
|
|
if chunk_info is None:
|
|
return chunk_info
|
|
if len(chunk_info["args"]["prepose_nodes"]) == 0:
|
|
return chunk_info
|
|
reorder_map = self._get_reorder_map(chunk_info)
|
|
self._update_all_reorder_map(reorder_map)
|
|
self._reorder_idx_trace(reorder_map)
|
|
self._reorder_self_node_list(reorder_map)
|
|
chunk_info = self._reorder_chunk_info(chunk_info, reorder_map)
|
|
return chunk_info
|
|
|
|
def reorder_node_list(self, node_list):
|
|
new_node_list = [None for _ in range(len(node_list))]
|
|
for old_idx, new_idx in self.all_reorder_map.items():
|
|
new_node_list[new_idx] = node_list[old_idx]
|
|
return new_node_list
|
|
|
|
|
|
class MemoryEstimator(object):
|
|
def __init__(self, index_tracer: IndexTracer) -> None:
|
|
self.index_tracer = index_tracer
|
|
|
|
def _get_meta_node_size(self, x):
|
|
x = x.meta["tensor_meta"]
|
|
x = x.numel * torch.tensor([], dtype=x.dtype).element_size()
|
|
return x
|
|
|
|
def _get_output_node(self, n):
|
|
fwd_out = {
|
|
x.uuid: x
|
|
for x in n.meta["fwd_out"]
|
|
if isinstance(x, torch.Tensor) and hasattr(x, "uuid")
|
|
}
|
|
out_size = activation_size(fwd_out)
|
|
out_node = [n.name] if out_size > 0 else []
|
|
# if any(i in n.name for i in ['transpose', 'permute', 'view']):
|
|
# out_size = 0
|
|
return out_size, out_node
|
|
|
|
def _get_output_node_size(self, n):
|
|
return self._get_output_node(n)[0]
|
|
|
|
def _add_active_node(self, n, active_list):
|
|
new_active = self._get_output_node(n)[1]
|
|
if n.op == "placeholder":
|
|
new_active.append(n.name)
|
|
for i in new_active:
|
|
if i not in active_list:
|
|
active_list.append(i)
|
|
|
|
def _get_delete_node(self, user, user_to_last_uses, to_keep=None):
|
|
delete_size = 0
|
|
delete_node = []
|
|
if user.op not in ("output",):
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
if to_keep is not None:
|
|
keep_list = []
|
|
for n in nodes_to_delete:
|
|
if n.name in to_keep:
|
|
keep_list.append(n)
|
|
for n in keep_list:
|
|
if n in nodes_to_delete:
|
|
nodes_to_delete.remove(n)
|
|
if len(nodes_to_delete):
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
delete_size = sum([i[0] for i in out_node])
|
|
for i in range(len(out_node)):
|
|
if out_node[i][0] > 0:
|
|
delete_node.append(out_node[i][1][0])
|
|
elif nodes_to_delete[i].op == "placeholder":
|
|
delete_node.append(nodes_to_delete[i].name)
|
|
# elif any(j in nodes_to_delete[i].name for j in ['transpose', 'permute', 'view']):
|
|
# delete_node.append(nodes_to_delete[i].name)
|
|
return delete_size, delete_node
|
|
|
|
def _get_delete_node_size(self, user, user_to_last_uses, to_keep):
|
|
return self._get_delete_node(user, user_to_last_uses, to_keep)[0]
|
|
|
|
def _remove_deactive_node(self, user, user_to_last_uses, active_list):
|
|
delete_node = self._get_delete_node(user, user_to_last_uses)[1]
|
|
for i in delete_node:
|
|
if i in active_list:
|
|
active_list.remove(i)
|
|
|
|
def _get_chunk_inputs_size(
|
|
self, chunk_inputs, chunk_inputs_non_chunk, node_list, chunk_end_idx
|
|
):
|
|
nodes_to_delete = []
|
|
for chunk_input in chunk_inputs + chunk_inputs_non_chunk:
|
|
chunk_input_users = chunk_input.users.keys()
|
|
chunk_input_users_idx = [
|
|
_find_idx_by_name(i.name, node_list) for i in chunk_input_users
|
|
]
|
|
if all(i <= chunk_end_idx for i in chunk_input_users_idx):
|
|
if chunk_input not in nodes_to_delete:
|
|
nodes_to_delete.append(chunk_input)
|
|
out_node = [self._get_output_node(i) for i in nodes_to_delete]
|
|
delete_size = sum([i[0] for i in out_node])
|
|
return delete_size
|
|
|
|
def _get_last_usr(self, nodes):
|
|
node_to_last_use: Dict[Node, Node] = {}
|
|
user_to_last_uses: Dict[Node, List[Node]] = {}
|
|
|
|
def register_last_uses(n: Node, user: Node):
|
|
if n not in node_to_last_use:
|
|
node_to_last_use[n] = user
|
|
user_to_last_uses.setdefault(user, []).append(n)
|
|
|
|
for node in reversed(nodes):
|
|
map_arg(node.args, lambda n: register_last_uses(n, node))
|
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
|
return user_to_last_uses
|
|
|
|
def _get_contiguous_memory(self, node, not_contiguous_list, delete=False):
|
|
mem = 0
|
|
not_contiguous_ops = ["permute"]
|
|
inherit_contiguous_ops = ["transpose", "view"]
|
|
|
|
if node.op == "call_function" and any(
|
|
n in node.name for n in ["matmul", "reshape"]
|
|
):
|
|
for n in node.args:
|
|
if n in not_contiguous_list:
|
|
# matmul won't change origin tensor, but create a tmp copy
|
|
mem += self._get_output_node_size(n)
|
|
elif node.op == "call_module":
|
|
for n in node.args:
|
|
if n in not_contiguous_list:
|
|
# module will just make origin tensor to contiguous
|
|
if delete:
|
|
not_contiguous_list.remove(n)
|
|
elif node.op == "call_method" and any(
|
|
i in node.name for i in not_contiguous_ops
|
|
):
|
|
if node not in not_contiguous_list:
|
|
not_contiguous_list.append(node)
|
|
return mem
|
|
|
|
def _get_chunk_ratio(self, node, chunk_node_dim, chunk_size):
|
|
if node not in chunk_node_dim:
|
|
return 1.0
|
|
node_shape = _get_node_shape(node)
|
|
chunk_dim = chunk_node_dim[node]["chunk_dim"]
|
|
if chunk_dim is None:
|
|
return 1.0
|
|
else:
|
|
return float(chunk_size) / node_shape[chunk_dim]
|
|
|
|
def _get_chunk_delete_node_size(
|
|
self, user, user_to_last_uses, chunk_ratio, chunk_inputs_names
|
|
):
|
|
# if any(j in user.name for j in ['transpose', 'permute', 'view']):
|
|
# return 0
|
|
if user.op in ("placeholder", "output"):
|
|
return 0
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
delete_size = 0
|
|
for n in nodes_to_delete:
|
|
if n.name in chunk_inputs_names:
|
|
continue
|
|
delete_size += self._get_output_node_size(n) * chunk_ratio
|
|
return delete_size
|
|
|
|
def _print_mem_log(self, log, nodes, title=None):
|
|
if title:
|
|
print(title)
|
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
|
print("%s:%.2f \t" % (n.name, l), end="")
|
|
if (idx + 1) % 3 == 0:
|
|
print("")
|
|
print("\n")
|
|
|
|
def _print_compute_op_mem_log(self, log, nodes, title=None):
|
|
if title:
|
|
print(title)
|
|
for idx, (l, n) in enumerate(zip(log, nodes)):
|
|
if n.op in ["placeholder", "get_attr", "output"]:
|
|
continue
|
|
if any(i in n.name for i in ["getitem", "getattr"]):
|
|
continue
|
|
print("%s:%.2f \t" % (n.name, l), end="")
|
|
if (idx + 1) % 3 == 0:
|
|
print("")
|
|
print("\n")
|
|
|
|
def estimate_chunk_inference_mem(
|
|
self,
|
|
node_list,
|
|
chunk_infos=None,
|
|
print_mem=False,
|
|
):
|
|
act_memory = 0.0
|
|
act_memory_peak_log = []
|
|
act_memory_after_node_log = []
|
|
active_node_list = []
|
|
active_node_list_log = []
|
|
not_contiguous_list = []
|
|
user_to_last_uses = self._get_last_usr(node_list)
|
|
user_to_last_uses_no_free_var = self._get_last_usr(node_list)
|
|
_delete_free_var_from_last_use(user_to_last_uses_no_free_var)
|
|
|
|
use_chunk = True if chunk_infos is not None else False
|
|
chunk_within = False
|
|
chunk_region_idx = None
|
|
chunk_ratio = 1 # use it to estimate chunk mem
|
|
chunk_inputs_names = []
|
|
|
|
if use_chunk:
|
|
chunk_regions = [i["region"] for i in chunk_infos]
|
|
chunk_starts = [i[0] for i in chunk_regions]
|
|
chunk_ends = [i[1] for i in chunk_regions]
|
|
chunk_inputs = [i["inputs"] for i in chunk_infos]
|
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_infos]
|
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
|
j.name for i in chunk_inputs_non_chunk for j in i
|
|
]
|
|
chunk_outputs = [i["outputs"][0] for i in chunk_infos]
|
|
chunk_node_dim = [i["node_chunk_dim"] for i in chunk_infos]
|
|
chunk_sizes = [
|
|
i["chunk_size"] if "chunk_size" in i else 1 for i in chunk_infos
|
|
]
|
|
|
|
for idx, node in enumerate(node_list):
|
|
# if node in chunk start nodes, change chunk ratio and add chunk_tensor
|
|
if use_chunk and idx in chunk_starts:
|
|
chunk_within = True
|
|
chunk_region_idx = chunk_starts.index(idx)
|
|
act_memory += self._get_output_node_size(
|
|
chunk_outputs[chunk_region_idx]
|
|
) / (1024**2)
|
|
|
|
# determine chunk ratio for current node
|
|
if chunk_within:
|
|
chunk_ratio = self._get_chunk_ratio(
|
|
node,
|
|
chunk_node_dim[chunk_region_idx],
|
|
chunk_sizes[chunk_region_idx],
|
|
)
|
|
|
|
# if node is placeholder, just add the size of the node
|
|
if node.op == "placeholder":
|
|
act_memory += self._get_meta_node_size(node) * chunk_ratio / (1024**2)
|
|
act_memory_peak_log.append(act_memory)
|
|
# skip output
|
|
elif node.op == "output":
|
|
continue
|
|
# no change for non compute node
|
|
elif _is_non_compute_node_except_placeholder(node):
|
|
act_memory_peak_log.append(act_memory)
|
|
# node is a compute op
|
|
# calculate tmp, output node and delete node memory
|
|
else:
|
|
# forward memory
|
|
# TODO: contiguous_memory still not accurate for matmul, view, reshape and transpose
|
|
act_memory += (
|
|
self._get_contiguous_memory(node, not_contiguous_list)
|
|
* chunk_ratio
|
|
/ (1024**2)
|
|
)
|
|
act_memory += (
|
|
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
|
)
|
|
# record max act memory
|
|
act_memory_peak_log.append(act_memory)
|
|
# delete useless memory
|
|
act_memory -= (
|
|
self._get_contiguous_memory(node, not_contiguous_list, delete=True)
|
|
* chunk_ratio
|
|
/ (1024**2)
|
|
)
|
|
# delete unused vars not in chunk_input_list
|
|
# we can't delete input nodes until chunk ends
|
|
if chunk_within:
|
|
act_memory -= self._get_chunk_delete_node_size(
|
|
node,
|
|
user_to_last_uses_no_free_var,
|
|
chunk_ratio,
|
|
chunk_inputs_names,
|
|
) / (1024**2)
|
|
else:
|
|
act_memory -= self._get_delete_node_size(
|
|
node, user_to_last_uses_no_free_var, chunk_inputs_names
|
|
) / (1024**2)
|
|
|
|
# log active node, only effective without chunk
|
|
self._add_active_node(node, active_node_list)
|
|
self._remove_deactive_node(node, user_to_last_uses, active_node_list)
|
|
|
|
# if node in chunk end nodes, restore chunk settings
|
|
if use_chunk and idx in chunk_ends:
|
|
act_memory -= (
|
|
self._get_output_node_size(node) * chunk_ratio / (1024**2)
|
|
)
|
|
act_memory -= self._get_chunk_inputs_size(
|
|
chunk_inputs[chunk_region_idx],
|
|
chunk_inputs_non_chunk[chunk_region_idx],
|
|
node_list,
|
|
chunk_regions[chunk_region_idx][1],
|
|
) / (1024**2)
|
|
chunk_within = False
|
|
chunk_ratio = 1
|
|
chunk_region_idx = None
|
|
|
|
act_memory_after_node_log.append(act_memory)
|
|
active_node_list_log.append(copy.deepcopy(active_node_list))
|
|
|
|
if print_mem:
|
|
print("with chunk" if use_chunk else "without chunk")
|
|
# self._print_mem_log(act_memory_peak_log, node_list, "peak")
|
|
# self._print_mem_log(act_memory_after_node_log, node_list, "after")
|
|
self._print_compute_op_mem_log(act_memory_peak_log, node_list, "peak")
|
|
self._print_compute_op_mem_log(
|
|
act_memory_after_node_log, node_list, "after"
|
|
)
|
|
|
|
# param_memory = parameter_size(gm)
|
|
# all_memory = act_memory + param_memory
|
|
return act_memory_peak_log, act_memory_after_node_log, active_node_list_log
|
|
|
|
|
|
class ChunkSelector(object):
|
|
def __init__(
|
|
self, index_tracer: IndexTracer, memory_estimator: MemoryEstimator, stratge, max_memory=None
|
|
):
|
|
self.index_tracer = index_tracer
|
|
self.memory_estimator = memory_estimator
|
|
assert stratge in ["min_memory", "fit_memory"]
|
|
assert (stratge == "fit_memory" and max_memory is not None) or stratge != "fit_memory"
|
|
self.stratge = stratge
|
|
self.max_memory = max_memory # MB
|
|
|
|
def _select_best_chunk_region(
|
|
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
|
):
|
|
if self.stratge == "min_memory":
|
|
best_region = self._select_min_memory_chunk_region(
|
|
possible_chunk_regions, chunk_infos
|
|
)
|
|
elif self.stratge == "fit_memory":
|
|
best_region = self._select_fit_memory_chunk_region(
|
|
possible_chunk_regions,
|
|
chunk_infos,
|
|
peak_node,
|
|
max_chunk_region,
|
|
mem_peak,
|
|
)
|
|
else:
|
|
raise RuntimeError()
|
|
return best_region
|
|
|
|
def _select_fit_memory_chunk_region(
|
|
self, possible_chunk_regions, chunk_infos, peak_node, max_chunk_region, mem_peak
|
|
):
|
|
# stop chunk if max memory satisfy memory limit
|
|
if max(mem_peak) < self.max_memory:
|
|
return None
|
|
|
|
# remove illegal regions
|
|
illegal_regions = []
|
|
for i in possible_chunk_regions:
|
|
if not self._is_legal_region(i, chunk_infos):
|
|
illegal_regions.append(i)
|
|
for i in illegal_regions:
|
|
if i in possible_chunk_regions:
|
|
possible_chunk_regions.remove(i)
|
|
|
|
# get mem for chunk region
|
|
regions_dict = []
|
|
for region in possible_chunk_regions:
|
|
cur_chunk_infos = chunk_infos + [region]
|
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
|
self.index_tracer.node_list, cur_chunk_infos
|
|
)[0]
|
|
cur_chunk_region_peak = cur_mem_peak[
|
|
max_chunk_region[0] : max_chunk_region[1] + 1
|
|
]
|
|
cur_chunk_region_max_peak = max(cur_chunk_region_peak)
|
|
if cur_chunk_region_max_peak < self.max_memory:
|
|
regions_dict.append(
|
|
{
|
|
"chunk_info": region,
|
|
"chunk_max_mem": cur_chunk_region_max_peak,
|
|
"chunk_len": self._get_compute_node_num(
|
|
region["region"][0], region["region"][1]
|
|
),
|
|
}
|
|
)
|
|
# no region found
|
|
if len(regions_dict) == 0:
|
|
return None
|
|
|
|
# select the min chunk len
|
|
chunk_len = [i["chunk_len"] for i in regions_dict]
|
|
best_region_idx = chunk_len.index(min(chunk_len))
|
|
best_region = regions_dict[best_region_idx]["chunk_info"]
|
|
|
|
# get max chunk size
|
|
best_region = self._get_fit_chunk_size(best_region, chunk_infos)
|
|
return best_region
|
|
|
|
def _get_fit_chunk_size(self, chunk_info, chunk_infos):
|
|
chunk_size = 1
|
|
chunk_info["chunk_size"] = chunk_size
|
|
cur_chunk_max_mem = 0
|
|
# search a region
|
|
while cur_chunk_max_mem < self.max_memory:
|
|
chunk_size *= 2
|
|
chunk_info["chunk_size"] = chunk_size
|
|
cur_chunk_infos = chunk_infos + [chunk_info]
|
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
|
self.index_tracer.node_list, cur_chunk_infos
|
|
)[0]
|
|
cur_chunk_max_mem = max(
|
|
cur_mem_peak[chunk_info["region"][0] : chunk_info["region"][1] + 1]
|
|
)
|
|
# search exact size
|
|
chunk_info["chunk_size"] = self._chunk_size_binary_search(
|
|
chunk_size // 2, chunk_size, chunk_info, chunk_infos
|
|
)
|
|
return chunk_info
|
|
|
|
def _chunk_size_binary_search(self, l, r, chunk_info, chunk_infos):
|
|
if l >= 16:
|
|
gap = 4
|
|
else:
|
|
gap = 1
|
|
while r >= l + gap:
|
|
mid = int(l + (r - l) / 2)
|
|
chunk_info["chunk_size"] = mid
|
|
cur_chunk_infos = chunk_infos + [chunk_info]
|
|
cur_mem_peak = self.memory_estimator.estimate_chunk_inference_mem(
|
|
self.index_tracer.node_list, cur_chunk_infos
|
|
)[0]
|
|
cur_chunk_max_mem = max(
|
|
cur_mem_peak[chunk_info["region"][0] : chunk_info["region"][1] + 1]
|
|
)
|
|
if cur_chunk_max_mem >= self.max_memory:
|
|
r = mid - gap
|
|
else:
|
|
l = mid + gap
|
|
return l
|
|
|
|
def _get_compute_node_num(self, start, end):
|
|
count = 0
|
|
for i in self.index_tracer.node_list[start : end + 1]:
|
|
if _is_non_compute_node(i):
|
|
count += 1
|
|
return count
|
|
|
|
def _select_min_memory_chunk_region(self, possible_chunk_regions, chunk_infos):
|
|
max_region_range = 0
|
|
best_region = None
|
|
while len(possible_chunk_regions) > 0:
|
|
for i in possible_chunk_regions:
|
|
if i["region"][1] - i["region"][0] > max_region_range:
|
|
best_region = i
|
|
max_region_range = i["region"][1] - i["region"][0]
|
|
if self._is_legal_region(best_region, chunk_infos):
|
|
break
|
|
possible_chunk_regions.remove(i)
|
|
max_region_range = 0
|
|
best_region = None
|
|
return best_region
|
|
|
|
def _is_legal_region(self, cur_chunk_info, chunk_infos):
|
|
(chunk_region_start, chunk_region_end) = cur_chunk_info["region"]
|
|
if cur_chunk_info in chunk_infos:
|
|
return False
|
|
if chunk_region_end < chunk_region_start:
|
|
return False
|
|
for i in chunk_infos:
|
|
region = i["region"]
|
|
if not (
|
|
(chunk_region_start > region[1] and chunk_region_end > region[1])
|
|
or (chunk_region_start < region[0] and chunk_region_end < region[0])
|
|
):
|
|
return False
|
|
return True
|
|
|
|
|
|
class ChunkRegionSearch(object):
|
|
def __init__(self, gm, max_memory=None) -> None:
|
|
self.gm = gm
|
|
self.index_tracer = IndexTracer(list(gm.graph.nodes))
|
|
self.index_tracer.trace_index()
|
|
self.memory_estimator = MemoryEstimator(self.index_tracer)
|
|
self.chunk_selector = ChunkSelector(
|
|
self.index_tracer, self.memory_estimator, stratge="fit_memory", max_memory=max_memory
|
|
)
|
|
|
|
def _find_peak_node(self, mem_peak):
|
|
max_value = max(mem_peak)
|
|
max_idx = mem_peak.index(max_value)
|
|
return max_idx
|
|
|
|
def _get_free_var(self):
|
|
free_var_idx = []
|
|
for idx, n in enumerate(self.index_tracer.node_list):
|
|
if n.op == "placeholder":
|
|
free_var_idx.append(idx)
|
|
return free_var_idx
|
|
|
|
def _get_min_free_var(self, active_node_list, free_vars):
|
|
min_len = 999
|
|
for idx, n in enumerate(active_node_list):
|
|
if idx in free_vars:
|
|
continue
|
|
if len(n) < min_len:
|
|
min_len = len(n)
|
|
return min_len
|
|
|
|
def _search_max_chunk_region(self, active_node, peak_node, chunk_regions):
|
|
free_vars = self._get_free_var()
|
|
free_var_num = len(free_vars)
|
|
active_node_num = [len(i) for i in active_node]
|
|
min_active_node_num = min(active_node_num[free_var_num:])
|
|
threshold = max(free_var_num, min_active_node_num)
|
|
|
|
# from peak_node to free_var
|
|
inside_flag = False
|
|
chunk_region_start = free_var_num
|
|
for i in range(peak_node, -1, -1):
|
|
if active_node_num[i] <= threshold:
|
|
inside_flag = True
|
|
if inside_flag and active_node_num[i] > threshold:
|
|
chunk_region_start = i + 1
|
|
break
|
|
|
|
# from peak_node to len-2
|
|
inside_flag = False
|
|
chunk_region_end = len(active_node) - 1
|
|
for i in range(peak_node, len(active_node)):
|
|
if active_node_num[i] <= threshold:
|
|
inside_flag = True
|
|
if inside_flag and active_node_num[i] > threshold:
|
|
chunk_region_end = i
|
|
break
|
|
|
|
for i in chunk_regions:
|
|
region = i["region"]
|
|
if chunk_region_start >= region[0] and chunk_region_end <= region[1]:
|
|
return None
|
|
elif (
|
|
region[0] <= chunk_region_start <= region[1]
|
|
and chunk_region_end > region[1]
|
|
):
|
|
chunk_region_start = region[1] + 1
|
|
elif (
|
|
region[0] <= chunk_region_end <= region[1]
|
|
and chunk_region_start < region[0]
|
|
):
|
|
chunk_region_end = region[0] - 1
|
|
return chunk_region_start, chunk_region_end
|
|
|
|
def _is_not_compute(self, trace, chunk_range, dim_idx):
|
|
if trace["idx"][dim_idx] not in trace["compute"]:
|
|
return True
|
|
if trace["idx"][dim_idx] in trace["compute"] and all(
|
|
i < chunk_range[0] or i > chunk_range[1]
|
|
for i in trace["compute"][trace["idx"][dim_idx]]
|
|
):
|
|
return True
|
|
return False
|
|
|
|
def _find_free_dim(self, input_trace, output_trace, start_idx, end_idx):
|
|
start_traces = input_trace[start_idx]
|
|
end_trace = output_trace[end_idx]
|
|
end_node = self.index_tracer.node_list[end_idx]
|
|
chunk_infos = []
|
|
for end_dim, _ in enumerate(end_trace["idx"]):
|
|
if len(start_traces) > 1:
|
|
continue
|
|
for start_node, start_trace in start_traces.items():
|
|
for start_dim, _ in enumerate(start_trace["idx"]):
|
|
# dim size cannot be 1
|
|
if (
|
|
_get_node_shape(end_node)[end_dim] == 1
|
|
or _get_node_shape(start_node)[start_dim] == 1
|
|
):
|
|
continue
|
|
# check index source align
|
|
if not self.index_tracer.check_index_source(
|
|
start_dim, start_node, start_idx, end_dim, end_node
|
|
):
|
|
continue
|
|
# check index copmute
|
|
if not self.index_tracer.check_index_compute(
|
|
start_idx, end_dim, end_node, end_idx
|
|
):
|
|
continue
|
|
# flow search
|
|
chunk_info = self.index_tracer.flow_search(
|
|
start_idx, start_dim, end_idx, end_dim
|
|
)
|
|
if chunk_info is None:
|
|
continue
|
|
# check index copmute
|
|
if not self.index_tracer.check_index_duplicate(chunk_info):
|
|
continue
|
|
chunk_infos.append(chunk_info)
|
|
return chunk_infos
|
|
|
|
def _search_possible_chunk_regions(self, max_chunk_region, peak_node):
|
|
possible_chunk_region = []
|
|
output_trace = copy.deepcopy(self.index_tracer.idx_trace_list)
|
|
input_trace = [] # trace of a node's input nodes
|
|
for _, n in enumerate(self.index_tracer.node_list):
|
|
cur_trace = {}
|
|
for arg in n.args:
|
|
if type(arg) == type(n) and not _is_non_compute_node_except_placeholder(
|
|
arg
|
|
):
|
|
cur_trace[arg] = self.index_tracer._find_trace_from_node(arg)
|
|
input_trace.append(cur_trace)
|
|
|
|
for start_idx in range(max_chunk_region[0], peak_node + 1):
|
|
for end_idx in range(peak_node, max_chunk_region[1] + 1):
|
|
# skip non compute nodes
|
|
if _is_non_compute_node(
|
|
self.index_tracer.node_list[start_idx]
|
|
) or _is_non_compute_node(self.index_tracer.node_list[end_idx]):
|
|
continue
|
|
|
|
# select free dim
|
|
chunk_info = self._find_free_dim(
|
|
input_trace, output_trace, start_idx, end_idx
|
|
)
|
|
if len(chunk_info) > 0:
|
|
possible_chunk_region.extend(chunk_info)
|
|
return possible_chunk_region
|
|
|
|
def _step_search(self, mem_peak, active_node, chunk_regions):
|
|
peak_node = self._find_peak_node(mem_peak)
|
|
max_chunk_region = self._search_max_chunk_region(
|
|
active_node, peak_node, chunk_regions
|
|
)
|
|
if max_chunk_region == None:
|
|
return None
|
|
possible_chunk_regions = self._search_possible_chunk_regions(
|
|
max_chunk_region, peak_node
|
|
)
|
|
best_chunk_region = self.chunk_selector._select_best_chunk_region(
|
|
possible_chunk_regions, chunk_regions, peak_node, max_chunk_region, mem_peak
|
|
)
|
|
best_chunk_region = self.index_tracer.reorder_all(best_chunk_region)
|
|
return best_chunk_region
|
|
|
|
def _stop_search(self, init_mem_peak, mem_peak):
|
|
sorted_init_mem_peak = sorted(init_mem_peak)
|
|
if max(mem_peak) < sorted_init_mem_peak[int(len(sorted_init_mem_peak) * 0.5)]:
|
|
return True
|
|
return False
|
|
|
|
def search_region(self):
|
|
chunk_infos = []
|
|
(
|
|
init_mem_peak,
|
|
_,
|
|
active_node,
|
|
) = self.memory_estimator.estimate_chunk_inference_mem(
|
|
self.index_tracer.node_list
|
|
)
|
|
mem_peak = init_mem_peak
|
|
|
|
while True:
|
|
chunk_info = self._step_search(mem_peak, active_node, chunk_infos)
|
|
if chunk_info is None:
|
|
break
|
|
chunk_infos.append(chunk_info)
|
|
|
|
(
|
|
mem_peak,
|
|
_,
|
|
active_node,
|
|
) = self.memory_estimator.estimate_chunk_inference_mem(
|
|
self.index_tracer.node_list, chunk_infos
|
|
)
|
|
if self._stop_search(init_mem_peak, mem_peak):
|
|
break
|
|
# self.memory_estimator.estimate_chunk_inference_mem(
|
|
# self.index_tracer.node_list, chunk_infos, print_mem=True
|
|
# )
|
|
return chunk_infos
|
|
|
|
|
|
def _gen_chunk_slice_dim(chunk_dim, chunk_idx_name, shape):
|
|
new_shape = "["
|
|
for idx, i in enumerate(shape):
|
|
if idx == chunk_dim:
|
|
new_shape += "%s:%s + chunk_size" % (chunk_idx_name, chunk_idx_name)
|
|
else:
|
|
new_shape += ":"
|
|
new_shape += ", "
|
|
new_shape = new_shape[:-2] + "]"
|
|
return new_shape
|
|
|
|
|
|
def _gen_loop_start(chunk_input, chunk_output, chunk_ouput_dim, chunk_size=2):
|
|
input_node = chunk_input[0]
|
|
out_shape = _get_node_shape(chunk_output)
|
|
out_str = str(list(out_shape))
|
|
context = (
|
|
"chunk_result = torch.empty(%s, dtype=%s.dtype, device=%s.device); chunk_size = %d\nfor chunk_idx in range"
|
|
% (out_str, input_node.name, input_node.name, chunk_size)
|
|
)
|
|
context += "(0, %d, chunk_size):\n" % (out_shape[chunk_ouput_dim])
|
|
return context
|
|
|
|
|
|
def _gen_loop_end(
|
|
chunk_inputs, chunk_non_compute_inputs, chunk_outputs, chunk_outputs_dim, node_list
|
|
):
|
|
chunk_outputs_name = chunk_outputs.name
|
|
chunk_outputs_idx = _find_idx_by_name(chunk_outputs_name, node_list)
|
|
chunk_output_shape = chunk_outputs.meta["tensor_meta"].shape
|
|
chunk_slice = _gen_chunk_slice_dim(
|
|
chunk_outputs_dim, "chunk_idx", chunk_output_shape
|
|
)
|
|
context = " chunk_result%s = %s; %s = None\n" % (
|
|
chunk_slice,
|
|
chunk_outputs_name,
|
|
chunk_outputs_name,
|
|
)
|
|
context += (
|
|
chunk_outputs_name + " = chunk_result; chunk_result = None; chunk_size = None"
|
|
)
|
|
|
|
# determine if its the last use for chunk input
|
|
for chunk_input in chunk_inputs + chunk_non_compute_inputs:
|
|
if all(
|
|
[
|
|
_find_idx_by_name(user.name, node_list) <= chunk_outputs_idx
|
|
for user in chunk_input.users.keys()
|
|
]
|
|
):
|
|
context += "; %s = None" % chunk_input.name
|
|
|
|
context += "\n"
|
|
return context
|
|
|
|
|
|
def _find_chunk_all_input_nodes(nodes: List[Node]):
|
|
"""
|
|
Find non-compute input and output node names.
|
|
input nodes are nodes used in the list
|
|
output nodes are nodes will use nodes in the list
|
|
"""
|
|
input_nodes = []
|
|
for node in nodes:
|
|
for input_node in node._input_nodes.keys():
|
|
if input_node not in nodes and input_node not in input_nodes:
|
|
input_nodes.append(input_node)
|
|
return input_nodes
|
|
|
|
|
|
def _find_chunk_compute_input_and_output_nodes(nodes: List[Node]):
|
|
"""
|
|
Find non-compute input and output node names.
|
|
input nodes are nodes used in the list
|
|
output nodes are nodes will use nodes in the list
|
|
"""
|
|
input_nodes = []
|
|
output_nodes = []
|
|
|
|
# if a node has an input node which is not in the node list
|
|
# we treat that input node as the input of the checkpoint function
|
|
for node in nodes:
|
|
for input_node in node._input_nodes.keys():
|
|
if (
|
|
input_node not in nodes
|
|
and input_node not in input_nodes
|
|
and not _is_non_compute_node_except_placeholder(input_node)
|
|
):
|
|
input_nodes.append(input_node)
|
|
|
|
# if a node has a user node which is not in the node list
|
|
# we treat that user node as the node receiving the current node output
|
|
for node in nodes:
|
|
for output_node in node.users.keys():
|
|
if (
|
|
output_node not in nodes
|
|
and node not in output_nodes
|
|
and not _is_non_compute_node_except_placeholder_output(output_node)
|
|
):
|
|
output_nodes.append(node)
|
|
|
|
return input_nodes, output_nodes
|
|
|
|
|
|
def _find_idx_by_name(name, nodes_list):
|
|
for idx, node in enumerate(nodes_list):
|
|
if node.name == name:
|
|
return idx
|
|
raise RuntimeError("name %s not found in node list" % name)
|
|
|
|
|
|
def _replace_name(context, name_from, name_to):
|
|
patterns = [(" ", " "), (" ", "."), (" ", ","), ("(", ")"), ("(", ",")]
|
|
for p in patterns:
|
|
source = p[0] + name_from + p[1]
|
|
target = p[0] + name_to + p[1]
|
|
if source in context:
|
|
context = context.replace(source, target)
|
|
return context
|
|
|
|
|
|
def _replace_reshape_size(context, node_name, reshape_size_dict):
|
|
if node_name not in reshape_size_dict:
|
|
return context
|
|
for size_name, size_value in reshape_size_dict[node_name].items():
|
|
context = context.replace(size_name, size_value)
|
|
return context
|
|
|
|
|
|
def emit_code_with_chunk(
|
|
body,
|
|
ckpt_func,
|
|
nodes,
|
|
emit_node_func,
|
|
delete_unused_value_func,
|
|
meta_nodes,
|
|
meta_graph,
|
|
max_memory=None,
|
|
):
|
|
"""Emit code with nested activation checkpoint
|
|
When we detect some of the node.activation_checkpoint is a List, we will use
|
|
this function to emit the activation checkpoint codes.
|
|
|
|
Args:
|
|
body: forward code
|
|
ckpt_func: checkpoint functions code
|
|
nodes: graph.nodes
|
|
emit_node_func: function to emit node
|
|
delete_unused_value_func: function to remove the unused value
|
|
"""
|
|
node_list = list(nodes)
|
|
|
|
# find the chunk regions
|
|
chunk_region_search = ChunkRegionSearch(meta_graph, max_memory)
|
|
chunk_search = chunk_region_search.search_region()
|
|
|
|
chunk_regions = [i["region"] for i in chunk_search]
|
|
chunk_starts = [i[0] for i in chunk_regions]
|
|
chunk_ends = [i[1] for i in chunk_regions]
|
|
|
|
chunk_inputs = [i["inputs"] for i in chunk_search]
|
|
chunk_inputs_non_chunk = [i["inputs_non_chunk"] for i in chunk_search]
|
|
chunk_inputs_dim = [i["inputs_dim"] for i in chunk_search]
|
|
chunk_inputs_names = [j.name for i in chunk_inputs for j in i] + [
|
|
j.name for i in chunk_inputs_non_chunk for j in i
|
|
]
|
|
|
|
chunk_outputs = [i["outputs"][0] for i in chunk_search]
|
|
chunk_outputs_dim = [i["outputs_dim"] for i in chunk_search]
|
|
|
|
node_list = chunk_region_search.index_tracer.reorder_node_list(node_list)
|
|
node_idx = 0
|
|
region_idx = 0
|
|
within_chunk_region = False
|
|
|
|
while node_idx < len(node_list):
|
|
node = node_list[node_idx]
|
|
|
|
if node_idx in chunk_starts:
|
|
within_chunk_region = True
|
|
region_idx = chunk_starts.index(node_idx)
|
|
body.append(
|
|
_gen_loop_start(
|
|
chunk_inputs[region_idx],
|
|
chunk_outputs[region_idx],
|
|
chunk_outputs_dim[region_idx],
|
|
chunk_search[region_idx]["chunk_size"],
|
|
)
|
|
)
|
|
|
|
if within_chunk_region:
|
|
emit_node_func(node, body)
|
|
# replace input var with chunk var
|
|
for input_node_idx, input_node in enumerate(chunk_inputs[region_idx]):
|
|
for idx, dim in chunk_inputs_dim[region_idx][input_node_idx].items():
|
|
if idx == node_idx:
|
|
chunk_slice = _gen_chunk_slice_dim(
|
|
dim[0], "chunk_idx", _get_node_shape(input_node)
|
|
)
|
|
body[-1] = _replace_name(
|
|
body[-1], input_node.name, input_node.name + chunk_slice
|
|
)
|
|
body[-1] = _replace_reshape_size(
|
|
body[-1], node.name, chunk_search[region_idx]["reshape_size"]
|
|
)
|
|
body[-1] = " " + body[-1]
|
|
delete_unused_value_func(node, body, chunk_inputs_names)
|
|
else:
|
|
emit_node_func(node, body)
|
|
if node_idx not in chunk_inputs:
|
|
delete_unused_value_func(node, body, chunk_inputs_names)
|
|
|
|
if node_idx in chunk_ends:
|
|
body.append(
|
|
_gen_loop_end(
|
|
chunk_inputs[region_idx],
|
|
chunk_inputs_non_chunk[region_idx],
|
|
chunk_outputs[region_idx],
|
|
chunk_outputs_dim[region_idx],
|
|
node_list,
|
|
)
|
|
)
|
|
within_chunk_region = False
|
|
|
|
node_idx += 1
|
|
|
|
|
|
if CODEGEN_AVAILABLE:
|
|
|
|
class ChunkCodeGen(CodeGen):
|
|
def __init__(self, meta_graph, max_memory=None):
|
|
super().__init__()
|
|
self.meta_graph = meta_graph
|
|
self.max_memory = max_memory
|
|
self.meta_node = list(meta_graph.graph.nodes)
|
|
|
|
def _gen_python_code(
|
|
self, nodes, root_module: str, namespace: _Namespace
|
|
) -> PythonCode:
|
|
free_vars: List[str] = []
|
|
body: List[str] = []
|
|
globals_: Dict[str, Any] = {}
|
|
wrapped_fns: Dict[str, None] = {}
|
|
|
|
# Wrap string in list to pass by reference
|
|
maybe_return_annotation: List[str] = [""]
|
|
|
|
def add_global(name_hint: str, obj: Any):
|
|
"""Add an obj to be tracked as a global.
|
|
|
|
We call this for names that reference objects external to the
|
|
Graph, like functions or types.
|
|
|
|
Returns: the global name that should be used to reference 'obj' in generated source.
|
|
"""
|
|
if (
|
|
_is_from_torch(obj) and obj != torch.device
|
|
): # to support registering torch.device
|
|
# HACK: workaround for how torch custom ops are registered. We
|
|
# can't import them like normal modules so they must retain their
|
|
# fully qualified name.
|
|
return _get_qualified_name(obj)
|
|
|
|
# normalize the name hint to get a proper identifier
|
|
global_name = namespace.create_name(name_hint, obj)
|
|
|
|
if global_name in globals_:
|
|
assert globals_[global_name] is obj
|
|
return global_name
|
|
globals_[global_name] = obj
|
|
return global_name
|
|
|
|
# set _custom_builtins here so that we needn't import colossalai in forward
|
|
_custom_builtins["colossalai"] = _CustomBuiltin(
|
|
"import colossalai", colossalai
|
|
)
|
|
|
|
# Pre-fill the globals table with registered builtins.
|
|
for name, (_, obj) in _custom_builtins.items():
|
|
add_global(name, obj)
|
|
|
|
def type_repr(o: Any):
|
|
if o == ():
|
|
# Empty tuple is used for empty tuple type annotation Tuple[()]
|
|
return "()"
|
|
|
|
typename = _type_repr(o)
|
|
|
|
if hasattr(o, "__origin__"):
|
|
# This is a generic type, e.g. typing.List[torch.Tensor]
|
|
origin_type = _origin_type_map.get(o.__origin__, o.__origin__)
|
|
origin_typename = add_global(_type_repr(origin_type), origin_type)
|
|
|
|
if hasattr(o, "__args__"):
|
|
# Assign global names for each of the inner type variables.
|
|
args = [type_repr(arg) for arg in o.__args__]
|
|
|
|
if len(args) == 0:
|
|
# Bare type, such as `typing.Tuple` with no subscript
|
|
# This code-path used in Python < 3.9
|
|
return origin_typename
|
|
|
|
return f'{origin_typename}[{",".join(args)}]'
|
|
else:
|
|
# Bare type, such as `typing.Tuple` with no subscript
|
|
# This code-path used in Python 3.9+
|
|
return origin_typename
|
|
|
|
# Common case: this is a regular module name like 'foo.bar.baz'
|
|
return add_global(typename, o)
|
|
|
|
def _format_args(
|
|
args: Tuple[Argument, ...], kwargs: Dict[str, Argument]
|
|
) -> str:
|
|
def _get_repr(arg):
|
|
# Handle NamedTuples (if it has `_fields`) via add_global.
|
|
if isinstance(arg, tuple) and hasattr(arg, "_fields"):
|
|
qualified_name = _get_qualified_name(type(arg))
|
|
global_name = add_global(qualified_name, type(arg))
|
|
return f"{global_name}{repr(tuple(arg))}"
|
|
return repr(arg)
|
|
|
|
args_s = ", ".join(_get_repr(a) for a in args)
|
|
kwargs_s = ", ".join(f"{k} = {_get_repr(v)}" for k, v in kwargs.items())
|
|
if args_s and kwargs_s:
|
|
return f"{args_s}, {kwargs_s}"
|
|
return args_s or kwargs_s
|
|
|
|
# Run through reverse nodes and record the first instance of a use
|
|
# of a given node. This represents the *last* use of the node in the
|
|
# execution order of the program, which we will use to free unused
|
|
# values
|
|
node_to_last_use: Dict[Node, Node] = {}
|
|
user_to_last_uses: Dict[Node, List[Node]] = {}
|
|
|
|
def register_last_uses(n: Node, user: Node):
|
|
if n not in node_to_last_use:
|
|
node_to_last_use[n] = user
|
|
user_to_last_uses.setdefault(user, []).append(n)
|
|
|
|
for node in reversed(nodes):
|
|
map_arg(node.args, lambda n: register_last_uses(n, node))
|
|
map_arg(node.kwargs, lambda n: register_last_uses(n, node))
|
|
|
|
_delete_free_var_from_last_use(user_to_last_uses)
|
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func
|
|
def delete_unused_values(user: Node, body, to_keep=[]):
|
|
"""
|
|
Delete values after their last use. This ensures that values that are
|
|
not used in the remainder of the code are freed and the memory usage
|
|
of the code is optimal.
|
|
"""
|
|
if user.op == "placeholder":
|
|
return
|
|
if user.op == "output":
|
|
body.append("\n")
|
|
return
|
|
nodes_to_delete = user_to_last_uses.get(user, [])
|
|
nodes_to_delete = [i for i in nodes_to_delete if i.name not in to_keep]
|
|
if len(nodes_to_delete):
|
|
to_delete_str = " = ".join(
|
|
[repr(n) for n in nodes_to_delete] + ["None"]
|
|
)
|
|
body.append(f"; {to_delete_str}\n")
|
|
else:
|
|
body.append("\n")
|
|
|
|
# NOTE: we add a variable to distinguish body and ckpt_func
|
|
def emit_node(node: Node, body):
|
|
maybe_type_annotation = (
|
|
"" if node.type is None else f" : {type_repr(node.type)}"
|
|
)
|
|
if node.op == "placeholder":
|
|
assert isinstance(node.target, str)
|
|
maybe_default_arg = (
|
|
"" if not node.args else f" = {repr(node.args[0])}"
|
|
)
|
|
free_vars.append(
|
|
f"{node.target}{maybe_type_annotation}{maybe_default_arg}"
|
|
)
|
|
raw_name = node.target.replace("*", "")
|
|
if raw_name != repr(node):
|
|
body.append(f"{repr(node)} = {raw_name}\n")
|
|
return
|
|
elif node.op == "call_method":
|
|
assert isinstance(node.target, str)
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.target)}"
|
|
f"({_format_args(node.args[1:], node.kwargs)})"
|
|
)
|
|
return
|
|
elif node.op == "call_function":
|
|
assert callable(node.target)
|
|
# pretty print operators
|
|
if (
|
|
node.target.__module__ == "_operator"
|
|
and node.target.__name__ in magic_methods
|
|
):
|
|
assert isinstance(node.args, tuple)
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = "
|
|
f"{magic_methods[node.target.__name__].format(*(repr(a) for a in node.args))}"
|
|
)
|
|
return
|
|
|
|
# pretty print inplace operators; required for jit.script to work properly
|
|
# not currently supported in normal FX graphs, but generated by torchdynamo
|
|
if (
|
|
node.target.__module__ == "_operator"
|
|
and node.target.__name__ in inplace_methods
|
|
):
|
|
body.append(
|
|
f"{inplace_methods[node.target.__name__].format(*(repr(a) for a in node.args))}; "
|
|
f"{repr(node)}{maybe_type_annotation} = {repr(node.args[0])}"
|
|
)
|
|
return
|
|
|
|
qualified_name = _get_qualified_name(node.target)
|
|
global_name = add_global(qualified_name, node.target)
|
|
# special case for getattr: node.args could be 2-argument or 3-argument
|
|
# 2-argument: attribute access; 3-argument: fall through to attrib function call with default value
|
|
if (
|
|
global_name == "getattr"
|
|
and isinstance(node.args, tuple)
|
|
and isinstance(node.args[1], str)
|
|
and node.args[1].isidentifier()
|
|
and len(node.args) == 2
|
|
):
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(repr(node.args[0]), node.args[1])}"
|
|
)
|
|
return
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = {global_name}({_format_args(node.args, node.kwargs)})"
|
|
)
|
|
if node.meta.get("is_wrapped", False):
|
|
wrapped_fns.setdefault(global_name)
|
|
return
|
|
elif node.op == "call_module":
|
|
assert isinstance(node.target, str)
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = "
|
|
f"{_format_target(root_module, node.target)}({_format_args(node.args, node.kwargs)})"
|
|
)
|
|
return
|
|
elif node.op == "get_attr":
|
|
assert isinstance(node.target, str)
|
|
body.append(
|
|
f"{repr(node)}{maybe_type_annotation} = {_format_target(root_module, node.target)}"
|
|
)
|
|
return
|
|
elif node.op == "output":
|
|
if node.type is not None:
|
|
maybe_return_annotation[0] = f" -> {type_repr(node.type)}"
|
|
body.append(self.generate_output(node.args[0]))
|
|
return
|
|
raise NotImplementedError(f"node: {node.op} {node.target}")
|
|
|
|
# Modified for activation checkpointing
|
|
ckpt_func = []
|
|
|
|
# if any node has a list of labels for activation_checkpoint, we
|
|
# will use nested type of activation checkpoint codegen
|
|
emit_code_with_chunk(
|
|
body,
|
|
ckpt_func,
|
|
nodes,
|
|
emit_node,
|
|
delete_unused_values,
|
|
self.meta_node,
|
|
self.meta_graph,
|
|
self.max_memory
|
|
)
|
|
|
|
if len(body) == 0:
|
|
# If the Graph has no non-placeholder nodes, no lines for the body
|
|
# have been emitted. To continue to have valid Python code, emit a
|
|
# single pass statement
|
|
body.append("pass\n")
|
|
|
|
if len(wrapped_fns) > 0:
|
|
wrap_name = add_global("wrap", torch.fx.wrap)
|
|
wrap_stmts = "\n".join(
|
|
[f'{wrap_name}("{name}")' for name in wrapped_fns]
|
|
)
|
|
else:
|
|
wrap_stmts = ""
|
|
|
|
if self._body_transformer:
|
|
body = self._body_transformer(body)
|
|
|
|
for name, value in self.additional_globals():
|
|
add_global(name, value)
|
|
|
|
# as we need colossalai.utils.checkpoint, we need to import colossalai
|
|
# in forward function
|
|
prologue = self.gen_fn_def(free_vars, maybe_return_annotation[0])
|
|
prologue = "".join(ckpt_func) + prologue
|
|
prologue = prologue
|
|
|
|
code = "".join(body)
|
|
code = "\n".join(" " + line for line in code.split("\n"))
|
|
fn_code = f"""
|
|
{wrap_stmts}
|
|
|
|
{prologue}
|
|
{code}"""
|
|
# print(fn_code)
|
|
return PythonCode(fn_code, globals_)
|