You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_fx/test_codegen/test_activation_checkpoint_...

183 lines
6.0 KiB

import pytest
import torch
import torch.nn.functional as F
from torch.utils.checkpoint import checkpoint
import colossalai
from colossalai.core import global_context as gpc
from colossalai.fx import ColoTracer
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.testing import rerun_if_address_is_in_use, spawn
try:
from colossalai.fx.codegen import ActivationCheckpointCodeGen
with_codegen = True
except:
# fall back to older pytorch version
from colossalai.fx.codegen import python_code_with_activation_checkpoint
with_codegen = False
class MLP(torch.nn.Module):
def __init__(self):
super().__init__()
self.linear1 = torch.nn.Linear(4, 4)
self.linear2 = torch.nn.Linear(4, 4)
def forward(self, x):
return self.linear1(x), self.linear2(x)
class relu(torch.nn.Module):
def __init__(self) -> None:
super().__init__()
self.relu = torch.nn.ReLU(inplace=True)
def forward(self, x):
return self.relu(x)
class MyModule(torch.nn.Module):
def __init__(self):
super().__init__()
self.mlp1 = MLP()
self.relu = relu()
self.linear2 = torch.nn.Linear(4, 4)
def ckpt2(self, x):
return F.relu(x, inplace=True)
def ckpt3(self, x, y):
return self.linear2(x) + self.linear2(y)
def forward(self, x, y):
y1, y2 = checkpoint(self.mlp1, x)
y3 = checkpoint(self.relu, x)
y4 = checkpoint(self.ckpt2, y)
y5 = checkpoint(self.ckpt3, y, y4)
y6 = self.linear2(y4)
return y1 + y2 + y3 + y4 + y5 + y6
def _run_act_ckpt_codegen(rank, world_size, port):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currently
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model and run forward
model = MyModule()
data1 = torch.rand(4, 4)
data2 = torch.rand(4, 4)
# copy model to cuda
model = model.to(device="cuda")
data1 = data1.to(device="cuda")
data2 = data2.to(device="cuda")
non_fx_out = model(data1, data2)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
codegen = ActivationCheckpointCodeGen()
graph.set_codegen(codegen)
# check ops are annotated with ckpt
# also annotate the selected node for offloading
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear2', 'relu_relu', 'relu']
offload_starts = ['mlp1_linear1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert 'activation_checkpoint' in node.meta
# annotate the selected node for offload
if node.name in offload_starts:
node.meta['activation_offload'] = True
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert checkpoint function will be generated and
# the offload option is correct
code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, y, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_3, False, y, relu, use_reentrant=True)' in code
# recompile and verify the outputs are consistent
fx_out = gm(data1, data2)
assert torch.equal(non_fx_out, fx_out)
gpc.destroy()
@pytest.mark.skipif(not with_codegen, reason='torch version is lower than 1.12.0')
@rerun_if_address_is_in_use()
def test_act_ckpt_codegen():
spawn(_run_act_ckpt_codegen, 1)
def _run_act_ckpt_python_code_torch11(rank, world_size, port):
# launch colossalai to make sure we could execute colossalai.utils.checkpoint currently
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
# build model and run forward
model = MyModule()
data1 = torch.rand(4, 4)
data2 = torch.rand(4, 4)
# copy model to cuda
data1 = data1.to(device="cuda")
data2 = data2.to(device="cuda")
non_fx_out = model(data1, data2)
# trace the module and replace codegen
tracer = ColoTracer(trace_act_ckpt=True)
graph = tracer.trace(model)
# replace a bound method of an object
graph._python_code = python_code_with_activation_checkpoint.__get__(graph)
# check ops are annotated with ckpt
ckpt_nodes = ['mlp1_linear1', 'mlp1_linear2', 'relu_relu', 'relu']
offload_starts = ['mlp1_linear1']
for node in graph.nodes:
if node.name in ckpt_nodes:
assert 'activation_checkpoint' in node.meta
# annotate the selected node for offload
if node.name in offload_starts:
node.meta['activation_offload'] = True
gm = ColoGraphModule(model, graph)
gm.recompile()
# assert checkpoint function will be generated and
# the offload option is correct
code = graph.python_code('self').src
assert 'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_0, True, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_1, False, x, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_2, False, y, use_reentrant=False)' in code and \
'colossalai.utils.activation_checkpoint.checkpoint(self.checkpoint_3, False, y, relu, use_reentrant=True)' in code
# recompile and verify the outputs are consistent
fx_out = gm(data1, data2)
assert torch.equal(non_fx_out, fx_out)
gpc.destroy()
@pytest.mark.skipif(with_codegen, reason='torch version is equal to or higher than 1.12.0')
@pytest.mark.skip(reason="currently torch11 ColoGraphModule is not done")
@rerun_if_address_is_in_use()
def test_act_ckpt_python_code_torch11():
spawn(_run_act_ckpt_python_code_torch11, 1)
if __name__ == '__main__':
_run_act_ckpt_codegen(rank=0)