You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/colossalai/engine/gradient_handler/_pipeline_parallel_gradient...

54 lines
2.3 KiB

#!/usr/bin/env python
from collections import defaultdict
import torch
import torch.distributed as dist
from torch._utils import _flatten_dense_tensors, _unflatten_dense_tensors
from colossalai.core import global_context as gpc
from colossalai.registry import GRADIENT_HANDLER
from ._base_gradient_handler import BaseGradientHandler
@GRADIENT_HANDLER.register_module
class PipelineSharedModuleGradientHandler(BaseGradientHandler):
"""A helper class to handle all-reduce operations in sub parallel groups.
A all-reduce collective communication will be operated in
:func:`handle_gradient` among all sub pipeline parallel groups.
For better performance, it bucketizes the gradients of all parameters that are
the same type to improve the efficiency of communication.
Args:
model (Module): Model where the gradients accumulate.
optimizer (Optimizer): Optimizer for updating the parameters.
"""
def handle_gradient(self):
"""A method running a all-reduce operation in sub pipeline parallel groups.
"""
if gpc.pipeline_parallel_size > 1:
# bucketize and all-reduce
buckets = defaultdict(lambda: defaultdict(list))
# Pack the buckets.
for param in self._model.parameters():
group = getattr(param, 'pipeline_shared_module_pg', None)
if param.requires_grad and group is not None and (
(hasattr(param, 'colo_attr') and not param.colo_attr.saved_grad.is_null())
or param.grad is not None):
tp = param.data.type()
buckets[group][tp].append(param)
# For each bucket, all-reduce and copy all-reduced grads.
for group, group_buckets in buckets.items():
for tp, bucket in group_buckets.items():
grads = [
param.colo_attr.grad_payload if hasattr(param, 'colo_attr') else param.grad.data
for param in bucket
]
coalesced = _flatten_dense_tensors(grads).to(torch.cuda.current_device())
dist.all_reduce(coalesced, op=dist.ReduceOp.SUM, group=group)
for buf, synced in zip(grads, _unflatten_dense_tensors(coalesced, grads)):
buf.copy_(synced)