mirror of https://github.com/hpcaitech/ColossalAI
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
47 lines
2.1 KiB
47 lines
2.1 KiB
from colossalai.context.moe_context import MOE_CONTEXT
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.registry import GRADIENT_HANDLER
|
|
from colossalai.utils.moe import get_moe_epsize_param_dict
|
|
|
|
from ...context.parallel_mode import ParallelMode
|
|
from ._base_gradient_handler import BaseGradientHandler
|
|
from .utils import bucket_allreduce
|
|
|
|
|
|
@GRADIENT_HANDLER.register_module
|
|
class MoeGradientHandler(BaseGradientHandler):
|
|
"""A helper class to handle all-reduce operations in a data parallel group and
|
|
moe model parallel. A all-reduce collective communication will be operated in
|
|
:func:`handle_gradient` among a data parallel group.
|
|
For better performance, it bucketizes the gradients of all parameters that are
|
|
the same type to improve the efficiency of communication.
|
|
|
|
Args:
|
|
model (Module): Model where the gradients accumulate.
|
|
optimizer (Optimizer): Optimizer for updating the parameters.
|
|
"""
|
|
|
|
def __init__(self, model, optimizer=None):
|
|
super().__init__(model, optimizer)
|
|
|
|
def handle_gradient(self):
|
|
"""A method running an all-reduce operation in a data parallel group.
|
|
Then running an all-reduce operation for all parameters in experts
|
|
across moe model parallel group
|
|
"""
|
|
global_data = gpc.data_parallel_size
|
|
|
|
if global_data > 1:
|
|
epsize_param_dict = get_moe_epsize_param_dict(self._model)
|
|
|
|
# epsize is 1, indicating the params are replicated among processes in data parallelism
|
|
# use the ParallelMode.DATA to get data parallel group
|
|
# reduce gradients for all parameters in data parallelism
|
|
if 1 in epsize_param_dict:
|
|
bucket_allreduce(param_list=epsize_param_dict[1], group=gpc.get_group(ParallelMode.DATA))
|
|
|
|
for ep_size in epsize_param_dict:
|
|
if ep_size != 1 and ep_size != MOE_CONTEXT.world_size:
|
|
bucket_allreduce(param_list=epsize_param_dict[ep_size],
|
|
group=MOE_CONTEXT.parallel_info_dict[ep_size].dp_group)
|