Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

122 lines
4.7 KiB

import os
from copy import deepcopy
from functools import partial
import pytest
import torch
import torch.distributed as dist
import torch.multiprocessing as mp
from chatgpt.experience_maker import NaiveExperienceMaker
from chatgpt.models.base import RewardModel
from chatgpt.models.gpt import GPTActor, GPTCritic
from chatgpt.replay_buffer import NaiveReplayBuffer
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy
from transformers.models.gpt2.configuration_gpt2 import GPT2Config
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
GPT_CONFIG = GPT2Config(n_embd=128, n_layer=4, n_head=4)
def get_data(batch_size: int, seq_len: int = 10) -> dict:
input_ids = torch.randint(0, 50257, (batch_size, seq_len), device='cuda')
attention_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attention_mask)
def gather_and_equal(tensor: torch.Tensor) -> bool:
world_size = dist.get_world_size()
outputs = [torch.empty_like(tensor) for _ in range(world_size)]
dist.all_gather(outputs, tensor.contiguous())
for t in outputs[1:]:
if not torch.equal(outputs[0], t):
return False
return True
def run_test_data(strategy):
EXPERINCE_BATCH_SIZE = 4
SAMPLE_BATCH_SIZE = 2
if strategy == 'ddp':
strategy = DDPStrategy()
elif strategy == 'colossalai':
strategy = ColossalAIStrategy(placement_policy='cuda')
else:
raise ValueError(f'Unsupported strategy "{strategy}"')
actor = GPTActor(config=GPT_CONFIG).cuda()
critic = GPTCritic(config=GPT_CONFIG).cuda()
initial_model = deepcopy(actor)
reward_model = RewardModel(deepcopy(critic.model)).cuda()
experience_maker = NaiveExperienceMaker(actor, critic, reward_model, initial_model)
replay_buffer = NaiveReplayBuffer(SAMPLE_BATCH_SIZE, cpu_offload=False)
# experience of all ranks should be the same
for _ in range(2):
data = get_data(EXPERINCE_BATCH_SIZE)
assert gather_and_equal(data['input_ids'])
assert gather_and_equal(data['attention_mask'])
experience = experience_maker.make_experience(**data,
do_sample=True,
max_length=16,
eos_token_id=50256,
pad_token_id=50256)
assert gather_and_equal(experience.sequences)
assert gather_and_equal(experience.action_log_probs)
assert gather_and_equal(experience.values)
assert gather_and_equal(experience.reward)
assert gather_and_equal(experience.advantages)
assert gather_and_equal(experience.action_mask)
assert gather_and_equal(experience.attention_mask)
replay_buffer.append(experience)
# replay buffer's data should be the same
buffer_size = torch.tensor([len(replay_buffer)], device='cuda')
assert gather_and_equal(buffer_size)
for item in replay_buffer.items:
assert gather_and_equal(item.sequences)
assert gather_and_equal(item.action_log_probs)
assert gather_and_equal(item.values)
assert gather_and_equal(item.reward)
assert gather_and_equal(item.advantages)
assert gather_and_equal(item.action_mask)
assert gather_and_equal(item.attention_mask)
# dataloader of each rank should have the same size and different batch
dataloader = strategy.setup_dataloader(replay_buffer)
dataloader_size = torch.tensor([len(dataloader)], device='cuda')
assert gather_and_equal(dataloader_size)
for experience in dataloader:
assert not gather_and_equal(experience.sequences)
assert not gather_and_equal(experience.action_log_probs)
assert not gather_and_equal(experience.values)
assert not gather_and_equal(experience.reward)
assert not gather_and_equal(experience.advantages)
# action mask and attention mask may be same
def run_dist(rank, world_size, port, strategy):
os.environ['RANK'] = str(rank)
os.environ['LOCAL_RANK'] = str(rank)
os.environ['WORLD_SIZE'] = str(world_size)
os.environ['MASTER_ADDR'] = 'localhost'
os.environ['MASTER_PORT'] = str(port)
run_test_data(strategy)
@pytest.mark.skip
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [2])
@pytest.mark.parametrize('strategy', ['ddp', 'colossalai'])
@rerun_if_address_is_in_use()
def test_data(world_size, strategy):
run_func = partial(run_dist, world_size=world_size, port=free_port(), strategy=strategy)
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_data(2, 'colossalai')