mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
184 lines
7.6 KiB
184 lines
7.6 KiB
import argparse |
|
from copy import deepcopy |
|
|
|
import torch |
|
import torch.distributed as dist |
|
import torch.nn as nn |
|
from chatgpt.models.base import RewardModel |
|
from chatgpt.models.gpt import GPTActor, GPTCritic |
|
from chatgpt.trainer import PPOTrainer |
|
from chatgpt.trainer.callbacks import PerformanceEvaluator |
|
from chatgpt.trainer.strategies import ColossalAIStrategy, DDPStrategy, Strategy |
|
from torch.optim import Adam |
|
from transformers.models.gpt2.configuration_gpt2 import GPT2Config |
|
from transformers.models.gpt2.tokenization_gpt2 import GPT2Tokenizer |
|
|
|
from colossalai.nn.optimizer import HybridAdam |
|
|
|
|
|
def get_model_numel(model: nn.Module, strategy: Strategy) -> int: |
|
numel = sum(p.numel() for p in model.parameters()) |
|
if isinstance(strategy, ColossalAIStrategy) and strategy.stage == 3 and strategy.shard_init: |
|
numel *= dist.get_world_size() |
|
return numel |
|
|
|
|
|
def preprocess_batch(samples) -> dict: |
|
input_ids = torch.stack(samples) |
|
attention_mask = torch.ones_like(input_ids, dtype=torch.long) |
|
return {'input_ids': input_ids, 'attention_mask': attention_mask} |
|
|
|
|
|
def print_rank_0(*args, **kwargs) -> None: |
|
if dist.get_rank() == 0: |
|
print(*args, **kwargs) |
|
|
|
|
|
def print_model_numel(model_dict: dict) -> None: |
|
B = 1024**3 |
|
M = 1024**2 |
|
K = 1024 |
|
outputs = '' |
|
for name, numel in model_dict.items(): |
|
outputs += f'{name}: ' |
|
if numel >= B: |
|
outputs += f'{numel / B:.2f} B\n' |
|
elif numel >= M: |
|
outputs += f'{numel / M:.2f} M\n' |
|
elif numel >= K: |
|
outputs += f'{numel / K:.2f} K\n' |
|
else: |
|
outputs += f'{numel}\n' |
|
print_rank_0(outputs) |
|
|
|
|
|
def get_gpt_config(model_name: str) -> GPT2Config: |
|
model_map = { |
|
's': GPT2Config(), |
|
'm': GPT2Config(n_embd=1024, n_layer=24, n_head=16), |
|
'l': GPT2Config(n_embd=1280, n_layer=36, n_head=20), |
|
'xl': GPT2Config(n_embd=1600, n_layer=48, n_head=25), |
|
'2b': GPT2Config(n_embd=2048, n_layer=40, n_head=16), |
|
'4b': GPT2Config(n_embd=2304, n_layer=64, n_head=16), |
|
'6b': GPT2Config(n_embd=4096, n_layer=30, n_head=16), |
|
'8b': GPT2Config(n_embd=4096, n_layer=40, n_head=16), |
|
'10b': GPT2Config(n_embd=4096, n_layer=50, n_head=16), |
|
'12b': GPT2Config(n_embd=4096, n_layer=60, n_head=16), |
|
'15b': GPT2Config(n_embd=4096, n_layer=78, n_head=16), |
|
'18b': GPT2Config(n_embd=4096, n_layer=90, n_head=16), |
|
'20b': GPT2Config(n_embd=8192, n_layer=25, n_head=16), |
|
'24b': GPT2Config(n_embd=8192, n_layer=30, n_head=16), |
|
'28b': GPT2Config(n_embd=8192, n_layer=35, n_head=16), |
|
'32b': GPT2Config(n_embd=8192, n_layer=40, n_head=16), |
|
'36b': GPT2Config(n_embd=8192, n_layer=45, n_head=16), |
|
'40b': GPT2Config(n_embd=8192, n_layer=50, n_head=16), |
|
'175b': GPT2Config(n_positions=2048, n_embd=12288, n_layer=96, n_head=96), |
|
} |
|
try: |
|
return model_map[model_name] |
|
except KeyError: |
|
raise ValueError(f'Unknown model "{model_name}"') |
|
|
|
|
|
def main(args): |
|
if args.strategy == 'ddp': |
|
strategy = DDPStrategy() |
|
elif args.strategy == 'colossalai_gemini': |
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cuda', initial_scale=2**5) |
|
elif args.strategy == 'colossalai_gemini_cpu': |
|
strategy = ColossalAIStrategy(stage=3, placement_policy='cpu', initial_scale=2**5) |
|
elif args.strategy == 'colossalai_zero2': |
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cuda') |
|
elif args.strategy == 'colossalai_zero2_cpu': |
|
strategy = ColossalAIStrategy(stage=2, placement_policy='cpu') |
|
elif args.strategy == 'colossalai_zero1': |
|
strategy = ColossalAIStrategy(stage=1, placement_policy='cuda') |
|
elif args.strategy == 'colossalai_zero1_cpu': |
|
strategy = ColossalAIStrategy(stage=1, placement_policy='cpu') |
|
else: |
|
raise ValueError(f'Unsupported strategy "{args.strategy}"') |
|
|
|
model_config = get_gpt_config(args.model) |
|
|
|
with strategy.model_init_context(): |
|
actor = GPTActor(config=model_config).cuda() |
|
critic = GPTCritic(config=model_config).cuda() |
|
|
|
initial_model = deepcopy(actor).cuda() |
|
reward_model = RewardModel(deepcopy(critic.model), deepcopy(critic.value_head)).cuda() |
|
|
|
actor_numel = get_model_numel(actor, strategy) |
|
critic_numel = get_model_numel(critic, strategy) |
|
initial_model_numel = get_model_numel(initial_model, strategy) |
|
reward_model_numel = get_model_numel(reward_model, strategy) |
|
print_model_numel({ |
|
'Actor': actor_numel, |
|
'Critic': critic_numel, |
|
'Initial model': initial_model_numel, |
|
'Reward model': reward_model_numel |
|
}) |
|
performance_evaluator = PerformanceEvaluator(actor_numel, |
|
critic_numel, |
|
initial_model_numel, |
|
reward_model_numel, |
|
enable_grad_checkpoint=False, |
|
ignore_episodes=1) |
|
|
|
if args.strategy.startswith('colossalai'): |
|
actor_optim = HybridAdam(actor.parameters(), lr=5e-6) |
|
critic_optim = HybridAdam(critic.parameters(), lr=5e-6) |
|
else: |
|
actor_optim = Adam(actor.parameters(), lr=5e-6) |
|
critic_optim = Adam(critic.parameters(), lr=5e-6) |
|
|
|
tokenizer = GPT2Tokenizer.from_pretrained('gpt2') |
|
tokenizer.pad_token = tokenizer.eos_token |
|
|
|
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model = strategy.prepare( |
|
(actor, actor_optim), (critic, critic_optim), reward_model, initial_model) |
|
|
|
trainer = PPOTrainer(strategy, |
|
actor, |
|
critic, |
|
reward_model, |
|
initial_model, |
|
actor_optim, |
|
critic_optim, |
|
max_epochs=args.max_epochs, |
|
train_batch_size=args.train_batch_size, |
|
experience_batch_size=args.experience_batch_size, |
|
tokenizer=preprocess_batch, |
|
max_length=512, |
|
do_sample=True, |
|
temperature=1.0, |
|
top_k=50, |
|
pad_token_id=tokenizer.pad_token_id, |
|
eos_token_id=tokenizer.eos_token_id, |
|
callbacks=[performance_evaluator]) |
|
|
|
random_prompts = torch.randint(tokenizer.vocab_size, (1000, 400), device=torch.cuda.current_device()) |
|
trainer.fit(random_prompts, |
|
num_episodes=args.num_episodes, |
|
max_timesteps=args.max_timesteps, |
|
update_timesteps=args.update_timesteps) |
|
|
|
print_rank_0(f'Peak CUDA mem: {torch.cuda.max_memory_allocated()/1024**3:.2f} GB') |
|
|
|
|
|
if __name__ == '__main__': |
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--model', default='s') |
|
parser.add_argument('--strategy', |
|
choices=[ |
|
'ddp', 'colossalai_gemini', 'colossalai_gemini_cpu', 'colossalai_zero2', |
|
'colossalai_zero2_cpu', 'colossalai_zero1', 'colossalai_zero1_cpu' |
|
], |
|
default='ddp') |
|
parser.add_argument('--num_episodes', type=int, default=3) |
|
parser.add_argument('--max_timesteps', type=int, default=8) |
|
parser.add_argument('--update_timesteps', type=int, default=8) |
|
parser.add_argument('--max_epochs', type=int, default=3) |
|
parser.add_argument('--train_batch_size', type=int, default=8) |
|
parser.add_argument('--experience_batch_size', type=int, default=8) |
|
args = parser.parse_args() |
|
main(args)
|
|
|