mirror of https://github.com/hpcaitech/ColossalAI
155 lines
5.8 KiB
Python
155 lines
5.8 KiB
Python
from colossalai.context import parallel_mode
|
|
from .op_wrapper import _COLOSSAL_OPS
|
|
|
|
import torch
|
|
from typing import Tuple, Optional
|
|
from numpy import product
|
|
from colossalai.core import global_context as gpc
|
|
from colossalai.nn.layer.utils import divide
|
|
from colossalai.tensor import TensorSpec, ComputePattern, ParallelAction
|
|
|
|
class ColoTensor(object):
|
|
""" Data Structure for Tensor in Colossal-AI
|
|
1. It contains a torch.Tensor as an attribute.
|
|
2. It supports lazy init the tensor's payload.
|
|
3. It can hijack the torch functions which using ColoTensors as args to our customized functions.
|
|
4. It supports distributing the tensor's payload to the shards among processes. (TODO)
|
|
"""
|
|
|
|
def __new__(cls, *args, **kwargs):
|
|
return super(ColoTensor, cls).__new__(cls)
|
|
|
|
def __init__(
|
|
self,
|
|
*size: Tuple[int],
|
|
dtype=None,
|
|
requires_grad=False,
|
|
pin_memory=False,
|
|
device=None,
|
|
torch_tensor=torch.empty(0),
|
|
shard_spec: TensorSpec = TensorSpec(),
|
|
):
|
|
self._size = size
|
|
self._dtype = dtype
|
|
self._requires_grad = requires_grad
|
|
self._pin_memory = pin_memory
|
|
self._device = device
|
|
self._torch_tensor = torch_tensor
|
|
self._shard_spec = shard_spec
|
|
|
|
@property
|
|
def shard_spec(self) -> TensorSpec:
|
|
return self._shard_spec
|
|
|
|
@property
|
|
def data(self):
|
|
return self._torch_tensor.data
|
|
|
|
@property
|
|
def grad(self):
|
|
return self._torch_tensor.grad
|
|
|
|
@property
|
|
def size(self):
|
|
return self._size
|
|
|
|
@property
|
|
def shape(self):
|
|
return torch.Size(self._size)
|
|
|
|
@property
|
|
def device(self):
|
|
return self._torch_tensor.device
|
|
|
|
def size(self, dim=None):
|
|
if dim is None:
|
|
return self.shape
|
|
return self._size[dim]
|
|
|
|
def dim(self):
|
|
return len(self._size)
|
|
|
|
def normal_(self, mean=0., std=1.):
|
|
torch_tensor = self.torch_tensor()
|
|
return torch_tensor.normal_(mean=mean, std=std)
|
|
|
|
def numel(self):
|
|
return product(self._size)
|
|
|
|
@staticmethod
|
|
def init_from_torch_tensor(tensor: torch.Tensor, save_payload=True) -> 'ColoTensor':
|
|
colo_t = ColoTensor(*tensor.size(),
|
|
dtype=tensor.dtype,
|
|
requires_grad=tensor.requires_grad,
|
|
pin_memory=tensor.is_pinned(),
|
|
device=tensor.device,
|
|
torch_tensor=tensor if save_payload else torch.empty(0))
|
|
return colo_t
|
|
|
|
def del_torch_tensor(self, save_shape=False) -> None:
|
|
"""
|
|
delete the payload of the torch tensor.
|
|
|
|
Args:
|
|
save_shape (bool, optional): if saving the shape of the torch_tensor.
|
|
If saving the shape, the size of self._torch_tensor is inconsist with the self._size.
|
|
Defaults to False.
|
|
"""
|
|
if not save_shape:
|
|
self._size = (0,)
|
|
self._torch_tensor = torch.empty((0,), device=self._device, dtype=self._dtype)
|
|
|
|
def torch_tensor(self) -> torch.Tensor:
|
|
if self._torch_tensor.numel() == 0:
|
|
self._torch_tensor = torch.empty(*self._size,
|
|
dtype=self._dtype,
|
|
pin_memory=self._pin_memory,
|
|
requires_grad=self._requires_grad,
|
|
device=self._device)
|
|
return self._torch_tensor
|
|
|
|
def set_spec(self, spec: TensorSpec, lazy_shard: bool = False) -> None:
|
|
self._shard_spec = spec
|
|
if lazy_shard == False:
|
|
self._shard()
|
|
|
|
def _shard(self):
|
|
assert self._shard_spec is not None, 'You should call set_spec() before _shard() ColoTensor.'
|
|
if self._shard_spec.num_action == 1:
|
|
if ComputePattern.TP1DRow in self._shard_spec.compute_patterns:
|
|
parallel_action = self._shard_spec.get_action_by_compute_pattern(ComputePattern.TP1DRow)
|
|
num_partition = gpc.get_world_size(parallel_action.parallel_mode)
|
|
local_rank = gpc.get_local_rank(parallel_action.parallel_mode)
|
|
dim = -1
|
|
chunk_size = divide(self._size[dim], num_partition)
|
|
# Reshape to get shard for this rank and we don't want autograd
|
|
# recording here for the narrow op and 'local_shard' should be a
|
|
# leaf variable in the autograd graph.
|
|
self._torch_tensor = self._torch_tensor.narrow(dim, local_rank * chunk_size, chunk_size).detach(
|
|
).contiguous() # TODO Shall we clone() here since detach() will point to the old tensor?
|
|
self._torch_tensor.requires_grad = self._requires_grad
|
|
self._size = self._torch_tensor.size()
|
|
|
|
@classmethod
|
|
def __torch_function__(cls, func, types, args=(), kwargs=None):
|
|
global _COLOSSAL_OPS
|
|
if func in _COLOSSAL_OPS:
|
|
for arg in args:
|
|
if isinstance(arg, ColoTensor):
|
|
return _COLOSSAL_OPS[func](types, args, kwargs, None)
|
|
|
|
for kwarg in kwargs.values():
|
|
if isinstance(kwarg, ColoTensor):
|
|
return _COLOSSAL_OPS[func](types, args, kwargs, None)
|
|
else:
|
|
# If we have not hijact the function, convert the ColoTensors in args and kwargs to torch tensors.
|
|
args = [arg.torch_tensor() if isinstance(arg, ColoTensor) else arg for arg in args]
|
|
if kwargs is None:
|
|
kwargs = {}
|
|
|
|
kwargs = {k: v.torch_tensor() if isinstance(v, ColoTensor) else v for k, v in kwargs.items()}
|
|
return func(*args, **kwargs)
|
|
|
|
def backward(self, gradient: Optional[torch.Tensor] = None , retain_graph: bool = False):
|
|
self._torch_tensor.backward(gradient=gradient, retain_graph=retain_graph)
|