ColossalAI/tests/test_shardformer/test_model/test_pure_pipeline.py

173 lines
5.5 KiB
Python

import copy
import random
from contextlib import nullcontext
from typing import Any, Callable, Iterator, List, Optional, Tuple
import numpy as np
import pytest
import torch
import torch.distributed as dist
from torch.nn import Module
from torch.optim import Optimizer
from torch.optim.lr_scheduler import _LRScheduler as LRScheduler
from torch.utils.data import DataLoader
from torch.utils.data.distributed import DistributedSampler
import colossalai
from colossalai.cluster import ProcessGroupMesh
from colossalai.interface import ModelWrapper, OptimizerWrapper
from colossalai.logging import disable_existing_loggers
from colossalai.pipeline.schedule import OneForwardOneBackwardSchedule
from colossalai.pipeline.stage_manager import PipelineStageManager
from colossalai.shardformer import ShardConfig, ShardFormer
from colossalai.testing import (
assert_hf_output_close,
clear_cache_before_run,
parameterize,
rerun_if_address_is_in_use,
spawn,
)
from tests.kit.model_zoo import model_zoo
from tests.test_shardformer.test_model._utils import build_model, build_pipeline_model, run_forward
DP_AXIS, PP_AXIS, TP_AXIS = 0, 1, 2
class PipelineOptimizer(OptimizerWrapper):
def __init__(self, optim: Optimizer, model: Module):
super().__init__(optim)
params = set(model.parameters())
new_param_groups = []
for group in optim.param_groups:
params = [p for p in group['params'] if p in params]
new_param_groups.append({**group, 'params': params})
optim.__setstate__({'param_groups': new_param_groups})
# TODO: support amp
class PipelinedModel(ModelWrapper):
def __init__(self, module: Module, shard_config: ShardConfig, stage_manager: PipelineStageManager) -> None:
self.stage_manager = stage_manager
shardformer = ShardFormer(shard_config)
module, self.shared_params = shardformer.optimize(module)
self.shared_param_process_groups = []
super().__init__(module)
def prepare_dataloader(dataset, batch_size, shuffle=False, seed=1024, drop_last=False, pin_memory=False, num_workers=0):
sampler = DistributedSampler(
dataset,
#rank=self.pg_mesh.coordinate(DP_AXIS),
shuffle=shuffle)
# Deterministic dataloader
def seed_worker(worker_id):
worker_seed = seed
np.random.seed(worker_seed)
torch.manual_seed(worker_seed)
random.seed(worker_seed)
return DataLoader(
dataset,
batch_size=batch_size,
sampler=sampler,
worker_init_fn=seed_worker,
drop_last=drop_last,
pin_memory=pin_memory,
num_workers=num_workers,
)
def execute_pipeline(
data_iter: Iterator,
model: PipelinedModel,
criterion: Callable[[Any, Any], torch.Tensor],
optimizer: PipelineOptimizer,
return_loss: bool = True,
return_outputs: bool = False,
schedule: OneForwardOneBackwardSchedule = None,
) -> dict:
# return loss or outputs if needed
outputs = schedule.forward_backward_step(model, optimizer, data_iter, criterion, return_loss, return_outputs)
return outputs
class data_loader():
def __getitem__(self, x):
return torch.ones((4, 128), dtype=torch.int).cuda() * 10
def loss(x, y):
return (x[0].float().mean() - y[0].float().mean())
@parameterize('enable_fused_normalization', [False])
@parameterize('enable_tensor_parallelism', [False])
@parameterize('use_lazy_init', [False])
def run_llama_test(enable_fused_normalization, enable_tensor_parallelism, use_lazy_init):
PP_DIM = 0
PP_SIZE = 2
RANK_TO_COORDINATE = {
0: (0, 0),
1: (0, 1),
2: (1, 0),
3: (1, 1),
}
PP_RANKS_IN_GROUP = {
0: [0, 1],
1: [0, 1],
2: [2, 3],
3: [2, 3],
}
pg_mesh = ProcessGroupMesh(PP_SIZE)
stage_manager = PipelineStageManager(pg_mesh, PP_DIM)
sub_model_zoo = model_zoo.get_sub_registry('transformers_llama')
for name, (model_fn, data_gen_fn, output_transform_fn, loss_fn, _) in sub_model_zoo.items():
if name != 'transformers_llama':
continue
num_microbatches = 2
org_model = model_fn().cuda()
data_iter = iter(data_loader())
model_copy = copy.deepcopy(org_model)
batch = next(data_iter)
with torch.no_grad():
y = model_copy(batch)
org_loss = loss(batch, y)
optimizer = torch.optim.AdamW(org_model.parameters(), lr=1e-3)
schedule = OneForwardOneBackwardSchedule(num_microbatches, stage_manager)
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism,
pipeline_stage_manager=stage_manager)
pipelined_model = PipelinedModel(org_model, shard_config, stage_manager)
pp_optimizer = PipelineOptimizer(optimizer, pipelined_model)
results = execute_pipeline(data_iter, pipelined_model, loss, pp_optimizer, schedule=schedule)
if stage_manager.is_last_stage():
assert results['loss'] == org_loss
else:
assert results['loss'] is None
assert results['outputs'] is None
torch.cuda.empty_cache()
def check_llama(rank, world_size, port):
disable_existing_loggers()
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
run_llama_test()
@pytest.mark.dist
@rerun_if_address_is_in_use()
@clear_cache_before_run()
def test_llama():
spawn(check_llama, 2)
if __name__ == "__main__":
test_llama()