ColossalAI/tests/test_shardformer/test_model/_utils.py

77 lines
2.9 KiB
Python

import copy
from contextlib import nullcontext
import torch
from torch.nn import Module
from colossalai.lazy import LazyInitContext
from colossalai.shardformer import ShardConfig, ShardFormer
def build_model(model_fn, enable_fused_normalization=True, enable_tensor_parallelism=True, use_lazy_init: bool = False):
ctx = LazyInitContext() if use_lazy_init else nullcontext()
with ctx:
# create new model
org_model = model_fn()
model_copy = copy.deepcopy(org_model)
if use_lazy_init:
ctx.materialize(org_model)
# shard model
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy)
return org_model.cuda(), sharded_model.cuda()
def build_pipeline_model(model_fn,
stage_manager=None,
enable_fused_normalization=False,
enable_tensor_parallelism=False,
use_lazy_init: bool = False):
ctx = LazyInitContext() if use_lazy_init else nullcontext()
with ctx:
# create new model
org_model = model_fn()
model_copy = copy.deepcopy(org_model)
if use_lazy_init:
ctx.materialize(org_model)
# shard model
shard_config = ShardConfig(enable_fused_normalization=enable_fused_normalization,
enable_tensor_parallelism=enable_tensor_parallelism,
pipeline_stage_manager=stage_manager)
shard_former = ShardFormer(shard_config=shard_config)
sharded_model, shared_params = shard_former.optimize(model_copy)
return org_model.cuda(), sharded_model.cuda()
def run_forward(original_model, sharded_model, data_gen_fn, output_transform_fn, loss_fn):
# prepare input
data = data_gen_fn()
data = {k: v.cuda() for k, v in data.items()}
# switch to train mode
original_model.train()
sharded_model.train()
# run forward
org_output = original_model(**data)
org_output = output_transform_fn(org_output)
org_loss = loss_fn(org_output)
shard_output = sharded_model(**data)
shard_output = output_transform_fn(shard_output)
shard_loss = loss_fn(shard_output)
return org_output, org_loss, shard_output, shard_loss
def check_state_dict(org_model: Module, sharded_model: Module, name: str = ''):
org_sd = org_model.state_dict()
shard_sd = sharded_model.state_dict()
for k, v in org_sd.items():
assert k in shard_sd, f'{name} {k} not in sharded model'
shard_v = shard_sd[k]
assert v.shape == shard_v.shape, f'{name} {k} shape mismatch, {v.shape} vs {shard_v.shape}'
assert v.dtype == shard_v.dtype, f'{name} {k} dtype mismatch, {v.dtype} vs {shard_v.dtype}'
assert torch.equal(v, shard_v), f'{name} {k} value mismatch'