Making large AI models cheaper, faster and more accessible
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

48 lines
1.6 KiB

from torch.nn import functional as F
from functools import partial
import colossalai
import pytest
import torch
import torch.multiprocessing as mp
from colossalai.testing import rerun_if_address_is_in_use
from colossalai.utils import free_port
from colossalai.tensor import ColoTensorSpec, ProcessGroup, ColoTensor
from tests.test_tensor.common_utils import tensor_equal, tensor_shard_equal, split_param_col_tp1d, split_param_row_tp1d
def run_with_spec(spec_init_func, pg: ProcessGroup):
model = torch.nn.Embedding(12, 32).cuda()
weight = ColoTensor(torch.nn.Parameter(model.weight.detach()), ColoTensorSpec(pg))
spec_init_func(weight, pg)
x = torch.tensor((0, 3, 6, 9)).cuda()
out = model(x)
colo_out = F.embedding(x, weight)
assert tensor_equal(out, colo_out)
grad = torch.rand_like(out)
out.backward(grad)
colo_out.backward(grad)
# compare grad inside a TP group
assert tensor_shard_equal(model.weight.grad, weight.grad, pg.tp_local_rank(), pg.tp_world_size())
def run_dist(rank, world_size, port):
# config = dict(parallel=dict(tensor=dict(mode="1d", size=world_size),))
colossalai.launch(config={}, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
pg = ProcessGroup(tp_degree=world_size)
run_with_spec(split_param_row_tp1d, pg)
run_with_spec(split_param_col_tp1d, pg)
@pytest.mark.dist
@pytest.mark.parametrize('world_size', [1, 4])
@rerun_if_address_is_in_use()
def test_embedding_1d(world_size):
run_func = partial(run_dist, world_size=world_size, port=free_port())
mp.spawn(run_func, nprocs=world_size)
if __name__ == '__main__':
test_embedding_1d(4)