mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
204 lines
6.6 KiB
204 lines
6.6 KiB
import re |
|
import torch |
|
from typing import Callable, List, Any |
|
from functools import partial |
|
from inspect import signature |
|
from packaging import version |
|
|
|
|
|
def parameterize(argument: str, values: List[Any]) -> Callable: |
|
""" |
|
This function is to simulate the same behavior as pytest.mark.parameterize. As |
|
we want to avoid the number of distributed network initialization, we need to have |
|
this extra decorator on the function launched by torch.multiprocessing. |
|
|
|
If a function is wrapped with this wrapper, non-paramterized arguments must be keyword arguments, |
|
positioanl arguments are not allowed. |
|
|
|
Usgae:: |
|
|
|
# Example 1: |
|
@parameterize('person', ['xavier', 'davis']) |
|
def say_something(person, msg): |
|
print(f'{person}: {msg}') |
|
|
|
say_something(msg='hello') |
|
|
|
# This will generate output: |
|
# > xavier: hello |
|
# > davis: hello |
|
|
|
# Exampel 2: |
|
@parameterize('person', ['xavier', 'davis']) |
|
@parameterize('msg', ['hello', 'bye', 'stop']) |
|
def say_something(person, msg): |
|
print(f'{person}: {msg}') |
|
|
|
say_something() |
|
|
|
# This will generate output: |
|
# > xavier: hello |
|
# > xavier: bye |
|
# > xavier: stop |
|
# > davis: hello |
|
# > davis: bye |
|
# > davis: stop |
|
|
|
Args: |
|
argument (str): the name of the argument to parameterize |
|
values (List[Any]): a list of values to iterate for this argument |
|
""" |
|
|
|
def _wrapper(func): |
|
|
|
def _execute_function_by_param(**kwargs): |
|
for val in values: |
|
arg_map = {argument: val} |
|
partial_func = partial(func, **arg_map) |
|
partial_func(**kwargs) |
|
|
|
return _execute_function_by_param |
|
|
|
return _wrapper |
|
|
|
|
|
def rerun_on_exception(exception_type: Exception = Exception, pattern: str = None, max_try: int = 5) -> Callable: |
|
""" |
|
A decorator on a function to re-run when an exception occurs. |
|
|
|
Usage:: |
|
|
|
# rerun for all kinds of exception |
|
@rerun_on_exception() |
|
def test_method(): |
|
print('hey') |
|
raise RuntimeError('Address already in use') |
|
|
|
# rerun for RuntimeError only |
|
@rerun_on_exception(exception_type=RuntimeError) |
|
def test_method(): |
|
print('hey') |
|
raise RuntimeError('Address already in use') |
|
|
|
# rerun for maximum 10 times if Runtime error occurs |
|
@rerun_on_exception(exception_type=RuntimeError, max_try=10) |
|
def test_method(): |
|
print('hey') |
|
raise RuntimeError('Address already in use') |
|
|
|
# rerun for infinite times if Runtime error occurs |
|
@rerun_on_exception(exception_type=RuntimeError, max_try=None) |
|
def test_method(): |
|
print('hey') |
|
raise RuntimeError('Address already in use') |
|
|
|
# rerun only the exception message is matched with pattern |
|
# for infinite times if Runtime error occurs |
|
@rerun_on_exception(exception_type=RuntimeError, pattern="^Address.*$") |
|
def test_method(): |
|
print('hey') |
|
raise RuntimeError('Address already in use') |
|
|
|
Args: |
|
exception_type (Exception, Optional): The type of exception to detect for rerun |
|
pattern (str, Optional): The pattern to match the exception message. |
|
If the pattern is not None and matches the exception message, |
|
the exception will be detected for rerun |
|
max_try (int, Optional): Maximum reruns for this function. The default value is 5. |
|
If max_try is None, it will rerun foreven if exception keeps occurings |
|
""" |
|
|
|
def _match_lines(lines, pattern): |
|
for line in lines: |
|
if re.match(pattern, line): |
|
return True |
|
return False |
|
|
|
def _wrapper(func): |
|
|
|
def _run_until_success(*args, **kwargs): |
|
try_count = 0 |
|
assert max_try is None or isinstance(max_try, int), \ |
|
f'Expected max_try to be None or int, but got {type(max_try)}' |
|
|
|
while max_try is None or try_count < max_try: |
|
try: |
|
try_count += 1 |
|
ret = func(*args, **kwargs) |
|
return ret |
|
except exception_type as e: |
|
error_lines = str(e).split('\n') |
|
if try_count < max_try and (pattern is None or _match_lines(error_lines, pattern)): |
|
print('Exception is caught, retrying...') |
|
# when pattern is not specified, we always skip the exception |
|
# when pattern is specified, we only skip when pattern is matched |
|
continue |
|
else: |
|
print('Maximum number of attempts is reached or pattern is not matched, no more retrying...') |
|
raise e |
|
|
|
# Override signature |
|
# otherwise pytest.mark.parameterize will raise the following error: |
|
# function does not use argumetn xxx |
|
sig = signature(func) |
|
_run_until_success.__signature__ = sig |
|
|
|
return _run_until_success |
|
|
|
return _wrapper |
|
|
|
|
|
def rerun_if_address_is_in_use(): |
|
""" |
|
This function reruns a wrapped function if "address already in use" occurs |
|
in testing spawned with torch.multiprocessing |
|
|
|
Usage:: |
|
|
|
@rerun_if_address_is_in_use() |
|
def test_something(): |
|
... |
|
|
|
""" |
|
# check version |
|
torch_version = version.parse(torch.__version__) |
|
assert torch_version.major == 1 |
|
|
|
# only torch >= 1.8 has ProcessRaisedException |
|
if torch_version.minor >= 8: |
|
exception = torch.multiprocessing.ProcessRaisedException |
|
else: |
|
exception = Exception |
|
|
|
func_wrapper = rerun_on_exception(exception_type=exception, pattern=".*Address already in use.*") |
|
return func_wrapper |
|
|
|
|
|
def skip_if_not_enough_gpus(min_gpus: int): |
|
""" |
|
This function is used to check the number of available GPUs on the system and |
|
automatically skip the test cases which require more GPUs. |
|
|
|
Note: |
|
The wrapped function must have `world_size` in its keyword argument. |
|
|
|
Usage: |
|
@skip_if_not_enough_gpus(min_gpus=8) |
|
def test_something(): |
|
# will be skipped if there are fewer than 8 GPUs available |
|
do_something() |
|
|
|
Arg: |
|
min_gpus (int): the minimum number of GPUs required to run this test. |
|
""" |
|
|
|
def _wrap_func(f): |
|
|
|
def _execute_by_gpu_num(*args, **kwargs): |
|
num_avail_gpu = torch.cuda.device_count() |
|
if num_avail_gpu >= min_gpus: |
|
f(*args, **kwargs) |
|
|
|
return _execute_by_gpu_num |
|
|
|
return _wrap_func
|
|
|