mirror of https://github.com/hpcaitech/ColossalAI
aibig-modeldata-parallelismdeep-learningdistributed-computingfoundation-modelsheterogeneous-traininghpcinferencelarge-scalemodel-parallelismpipeline-parallelism
You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
52 lines
2.3 KiB
52 lines
2.3 KiB
#!/usr/bin/env python |
|
# -*- encoding: utf-8 -*- |
|
|
|
from .amp_type import AMP_TYPE |
|
from colossalai.context import Config |
|
import torch.nn as nn |
|
from torch.optim import Optimizer |
|
from torch.nn.modules.loss import _Loss |
|
from .torch_amp import convert_to_torch_amp |
|
from .apex_amp import convert_to_apex_amp |
|
from .naive_amp import convert_to_naive_amp |
|
|
|
__all__ = ['convert_to_amp', 'convert_to_naive_amp', 'convert_to_apex_amp', 'convert_to_torch_amp', 'AMP_TYPE'] |
|
|
|
|
|
def convert_to_amp(model: nn.Module, optimizer: Optimizer, criterion: _Loss, mode: AMP_TYPE, amp_config: Config = None): |
|
"""A helper function to wrap training components with Torch AMP modules. |
|
|
|
Args: |
|
param model (:class:`torch.nn.Module`): your model object. |
|
optimizer (:class:`torch.optim.Optimizer`): your optimizer object. |
|
criterion (:class:`torch.nn.modules.loss._Loss`): your loss function object. |
|
mode (:class:`colossalai.amp.AMP_TYPE`): amp mode. |
|
amp_config (Union[:class:`colossalai.context.Config`, dict]): configuration for different amp modes. |
|
|
|
Returns: |
|
A tuple (model, optimizer, criterion). |
|
|
|
Note: |
|
``amp_config`` may vary from different mode you choose. You should check the corresponding amp mode |
|
for more details about ``amp_config``. |
|
For ``apex_amp``, please check |
|
`apex_amp config <https://nvidia.github.io/apex/amp.html?highlight=apex%20amp>`_. |
|
For ``naive_amp``, please check |
|
`naive_amp config <https://github.com/hpcaitech/ColossalAI/blob/main/colossalai/amp/naive_amp/_fp16_optimizer.py#L42>`_. |
|
For ``torch_amp``, please check |
|
`torch_amp config <https://github.com/pytorch/pytorch/blob/master/torch/cuda/amp/grad_scaler.py#L97>`_. |
|
""" |
|
assert isinstance(mode, AMP_TYPE), \ |
|
f'expected the argument mode be AMP_TYPE, but got {type(mode)}' |
|
|
|
if amp_config is None: |
|
amp_config = Config() |
|
|
|
if mode == AMP_TYPE.TORCH: |
|
model, optimizer, criterion = convert_to_torch_amp(model, optimizer, criterion, amp_config) |
|
elif mode == AMP_TYPE.APEX: |
|
model, optimizer = convert_to_apex_amp(model, optimizer, amp_config) |
|
elif mode == AMP_TYPE.NAIVE: |
|
model, optimizer = convert_to_naive_amp(model, optimizer, amp_config) |
|
|
|
return model, optimizer, criterion
|
|
|