You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
ColossalAI/tests/test_zero/test_low_level/test_grad_acc.py

161 lines
5.2 KiB

import copy
import pytest
import torch
import torch.nn as nn
from torch.nn.parallel import DistributedDataParallel as DDP
from torch.testing import assert_close
import colossalai
from colossalai.testing import spawn
from colossalai.testing.random import seed_all
from colossalai.zero import LowLevelZeroOptimizer
class MlpModel(nn.Module):
def __init__(self):
super(MlpModel, self).__init__()
self.linear1 = nn.Linear(128, 256)
self.linear2 = nn.Linear(256, 512)
def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x
def exam_zero_1_2_grad_acc():
local_rank = torch.distributed.get_rank()
seed_all(2009)
# create model
zero1_model = MlpModel().cuda()
zero2_model = copy.deepcopy(zero1_model)
# create optimizer
zero1_optimizer = torch.optim.Adam(zero1_model.parameters(), lr=1)
zero2_optimizer = torch.optim.Adam(zero2_model.parameters(), lr=1)
zero1_optimizer = LowLevelZeroOptimizer(zero1_optimizer,
overlap_communication=True,
initial_scale=32,
clip_grad_norm=1.0,
verbose=True)
zero2_optimizer = LowLevelZeroOptimizer(zero2_optimizer,
overlap_communication=True,
partition_grad=True,
initial_scale=32,
clip_grad_norm=1.0)
# create data
seed_all(2021 + local_rank)
input_data1 = torch.randn(32, 128).cuda()
input_data2 = torch.randn(32, 128).cuda()
def fwd_bwd_func(number, cur_data):
# zero-dp forward
zero1_output = zero1_model(cur_data)
zero2_output = zero2_model(cur_data)
assert torch.equal(zero1_output, zero2_output)
# zero-dp backward
zero1_optimizer.backward(zero1_output.sum().float(), sync_grad=False)
zero2_optimizer.backward(zero2_output.sum().float(), sync_grad=False)
for (n, z1p), z2p in zip(zero1_model.named_parameters(), zero2_model.parameters()):
if z2p.grad is not None:
# print(local_rank, n, z1p.shape, torch.max(z2p.grad), torch.max(torch.abs(z1p.grad - z2p.grad)))
assert torch.equal(z1p.grad, z2p.grad)
zero1_optimizer._sync_grad()
zero2_optimizer._sync_grad()
fwd_bwd_func(0, input_data1)
fwd_bwd_func(1, input_data2)
# step
zero1_optimizer.step()
zero2_optimizer.step()
# check updated param
for z1p, z2p in zip(zero1_model.parameters(), zero2_model.parameters()):
assert torch.equal(z1p.data, z2p.data)
def exam_zero_1_grad_acc():
local_rank = torch.distributed.get_rank()
seed_all(2008)
# create models
zero_model = MlpModel()
torch_model = copy.deepcopy(zero_model)
seed_all(2008)
zero_model = zero_model.cuda()
torch_model = DDP(torch_model.cuda(), bucket_cap_mb=0)
# create optimizer
zero_optimizer = torch.optim.Adam(zero_model.parameters(), lr=1)
# we only test stage 1 here
# in `check_sharded_param_consistency.py`, we will test whether
# level 1 and 2 will produce exactly the same results
zero_optimizer = LowLevelZeroOptimizer(zero_optimizer,
overlap_communication=False,
reduce_bucket_size=262144,
clip_grad_norm=1.0)
torch_optimizer = torch.optim.Adam(torch_model.parameters(), lr=1)
# create data
seed_all(2022 + local_rank)
input_data1 = torch.randn(32, 128).cuda()
input_data2 = torch.randn(32, 128).cuda()
def fwd_bwd_func(number, cur_data, check_flag):
# zero-dp forward
zero_output = zero_model(cur_data)
# torch-ddp forward
torch_output = torch_model(cur_data)
assert torch.equal(zero_output, torch_output)
# zero-dp backward
zero_optimizer.backward(zero_output.sum().float(), sync_grad=False)
# torch-ddp backward
torch_output.sum().backward()
if check_flag:
# check grad
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# print(n, p.shape, torch.max(torch.abs(p.grad - unscale_grad)))
assert torch.equal(p.grad, z1p.grad)
zero_optimizer._sync_grad()
fwd_bwd_func(0, input_data1, True)
fwd_bwd_func(1, input_data2, False)
zero_optimizer.step()
torch.nn.utils.clip_grad_norm_(torch_model.parameters(), 1.0)
torch_optimizer.step()
# check updated param
for (n, p), z1p in zip(torch_model.named_parameters(), zero_model.parameters()):
# print(n, p.shape, torch.max(p.data), torch.max(z1p.data), torch.max(torch.abs(p.data - z1p.data)))
assert_close(p.data, z1p.data)
def run_dist(rank, world_size, port):
colossalai.launch(config=dict(), rank=rank, world_size=world_size, port=port, host='localhost')
exam_zero_1_grad_acc()
exam_zero_1_2_grad_acc()
@pytest.mark.dist
def test_grad_accumulation():
spawn(run_dist, 2)
if __name__ == '__main__':
test_grad_accumulation()