mirror of https://github.com/hpcaitech/ColossalAI
171 lines
5.2 KiB
Python
171 lines
5.2 KiB
Python
# based on https://github.com/isl-org/MiDaS
|
|
|
|
import cv2
|
|
import torch
|
|
import torch.nn as nn
|
|
from torchvision.transforms import Compose
|
|
|
|
from ldm.modules.midas.midas.dpt_depth import DPTDepthModel
|
|
from ldm.modules.midas.midas.midas_net import MidasNet
|
|
from ldm.modules.midas.midas.midas_net_custom import MidasNet_small
|
|
from ldm.modules.midas.midas.transforms import Resize, NormalizeImage, PrepareForNet
|
|
|
|
|
|
ISL_PATHS = {
|
|
"dpt_large": "midas_models/dpt_large-midas-2f21e586.pt",
|
|
"dpt_hybrid": "midas_models/dpt_hybrid-midas-501f0c75.pt",
|
|
"midas_v21": "",
|
|
"midas_v21_small": "",
|
|
}
|
|
|
|
|
|
def disabled_train(self, mode=True):
|
|
"""Overwrite model.train with this function to make sure train/eval mode
|
|
does not change anymore."""
|
|
return self
|
|
|
|
|
|
def load_midas_transform(model_type):
|
|
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
|
# load transform only
|
|
if model_type == "dpt_large": # DPT-Large
|
|
net_w, net_h = 384, 384
|
|
resize_mode = "minimal"
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
|
net_w, net_h = 384, 384
|
|
resize_mode = "minimal"
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == "midas_v21":
|
|
net_w, net_h = 384, 384
|
|
resize_mode = "upper_bound"
|
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
|
elif model_type == "midas_v21_small":
|
|
net_w, net_h = 256, 256
|
|
resize_mode = "upper_bound"
|
|
normalization = NormalizeImage(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
|
|
|
else:
|
|
assert False, f"model_type '{model_type}' not implemented, use: --model_type large"
|
|
|
|
transform = Compose(
|
|
[
|
|
Resize(
|
|
net_w,
|
|
net_h,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method=resize_mode,
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
normalization,
|
|
PrepareForNet(),
|
|
]
|
|
)
|
|
|
|
return transform
|
|
|
|
|
|
def load_model(model_type):
|
|
# https://github.com/isl-org/MiDaS/blob/master/run.py
|
|
# load network
|
|
model_path = ISL_PATHS[model_type]
|
|
if model_type == "dpt_large": # DPT-Large
|
|
model = DPTDepthModel(
|
|
path=model_path,
|
|
backbone="vitl16_384",
|
|
non_negative=True,
|
|
)
|
|
net_w, net_h = 384, 384
|
|
resize_mode = "minimal"
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == "dpt_hybrid": # DPT-Hybrid
|
|
model = DPTDepthModel(
|
|
path=model_path,
|
|
backbone="vitb_rn50_384",
|
|
non_negative=True,
|
|
)
|
|
net_w, net_h = 384, 384
|
|
resize_mode = "minimal"
|
|
normalization = NormalizeImage(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
|
|
|
|
elif model_type == "midas_v21":
|
|
model = MidasNet(model_path, non_negative=True)
|
|
net_w, net_h = 384, 384
|
|
resize_mode = "upper_bound"
|
|
normalization = NormalizeImage(
|
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
|
)
|
|
|
|
elif model_type == "midas_v21_small":
|
|
model = MidasNet_small(model_path, features=64, backbone="efficientnet_lite3", exportable=True,
|
|
non_negative=True, blocks={'expand': True})
|
|
net_w, net_h = 256, 256
|
|
resize_mode = "upper_bound"
|
|
normalization = NormalizeImage(
|
|
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]
|
|
)
|
|
|
|
else:
|
|
print(f"model_type '{model_type}' not implemented, use: --model_type large")
|
|
assert False
|
|
|
|
transform = Compose(
|
|
[
|
|
Resize(
|
|
net_w,
|
|
net_h,
|
|
resize_target=None,
|
|
keep_aspect_ratio=True,
|
|
ensure_multiple_of=32,
|
|
resize_method=resize_mode,
|
|
image_interpolation_method=cv2.INTER_CUBIC,
|
|
),
|
|
normalization,
|
|
PrepareForNet(),
|
|
]
|
|
)
|
|
|
|
return model.eval(), transform
|
|
|
|
|
|
class MiDaSInference(nn.Module):
|
|
MODEL_TYPES_TORCH_HUB = [
|
|
"DPT_Large",
|
|
"DPT_Hybrid",
|
|
"MiDaS_small"
|
|
]
|
|
MODEL_TYPES_ISL = [
|
|
"dpt_large",
|
|
"dpt_hybrid",
|
|
"midas_v21",
|
|
"midas_v21_small",
|
|
]
|
|
|
|
def __init__(self, model_type):
|
|
super().__init__()
|
|
assert (model_type in self.MODEL_TYPES_ISL)
|
|
model, _ = load_model(model_type)
|
|
self.model = model
|
|
self.model.train = disabled_train
|
|
|
|
def forward(self, x):
|
|
# x in 0..1 as produced by calling self.transform on a 0..1 float64 numpy array
|
|
# NOTE: we expect that the correct transform has been called during dataloading.
|
|
with torch.no_grad():
|
|
prediction = self.model(x)
|
|
prediction = torch.nn.functional.interpolate(
|
|
prediction.unsqueeze(1),
|
|
size=x.shape[2:],
|
|
mode="bicubic",
|
|
align_corners=False,
|
|
)
|
|
assert prediction.shape == (x.shape[0], 1, x.shape[2], x.shape[3])
|
|
return prediction
|
|
|