mirror of https://github.com/hpcaitech/ColossalAI
84 lines
3.5 KiB
Python
84 lines
3.5 KiB
Python
#!/usr/bin/env python
|
|
# -*- encoding: utf-8 -*-
|
|
|
|
import copy
|
|
from functools import partial
|
|
|
|
import colossalai
|
|
import pytest
|
|
import torch
|
|
import torch.multiprocessing as mp
|
|
from colossalai.utils import free_port
|
|
from colossalai.zero.init_ctx import ZeroInitContext
|
|
from colossalai.zero.shard_utils import (BucketTensorShardStrategy, TensorShardStrategy)
|
|
from colossalai.zero.sharded_model import ShardedModelV2
|
|
from colossalai.zero.sharded_model._zero3_utils import cast_tensor_to_fp16
|
|
from colossalai.zero.sharded_model.utils import col_model_deepcopy
|
|
from tests.components_to_test.registry import non_distributed_component_funcs
|
|
from torch.nn.parallel import DistributedDataParallel as DDP
|
|
|
|
from common import CONFIG, check_grads_padding, run_fwd_bwd
|
|
from colossalai.zero.sharded_model.utils import col_model_deepcopy
|
|
|
|
|
|
def run_dist(rank, world_size, port, use_zero_init_ctx, enable_autocast, shard_strategy):
|
|
colossalai.launch(config=CONFIG, rank=rank, world_size=world_size, host='localhost', port=port, backend='nccl')
|
|
|
|
test_models = ['repeated_computed_layers', 'resnet18', 'bert']
|
|
shard_strategy = shard_strategy()
|
|
for model_name in test_models:
|
|
get_components_func = non_distributed_component_funcs.get_callable(model_name)
|
|
model_builder, train_dataloader, _, _, criterion = get_components_func()
|
|
|
|
rm_torch_payload_on_the_fly = False
|
|
|
|
if use_zero_init_ctx:
|
|
with ZeroInitContext(convert_fp16=True,
|
|
target_device=torch.device(f'cpu:0'),
|
|
shard_strategy=shard_strategy,
|
|
shard_param=True,
|
|
rm_torch_payload_on_the_fly=rm_torch_payload_on_the_fly):
|
|
zero_model = model_builder(checkpoint=True)
|
|
zero_model = ShardedModelV2(zero_model, shard_strategy, use_memory_tracer=True)
|
|
|
|
model = model_builder(checkpoint=True).half()
|
|
col_model_deepcopy(zero_model, model)
|
|
model = model.cuda()
|
|
else:
|
|
model = model_builder(checkpoint=True).half().cuda()
|
|
zero_model = ShardedModelV2(copy.deepcopy(model), shard_strategy)
|
|
|
|
model = DDP(model)
|
|
|
|
for i, (data, label) in enumerate(train_dataloader):
|
|
if i > 3:
|
|
break
|
|
|
|
data, label = cast_tensor_to_fp16(data).cuda(), label.cuda()
|
|
run_fwd_bwd(model, data, label, criterion, enable_autocast)
|
|
run_fwd_bwd(zero_model, data, label, criterion, enable_autocast)
|
|
|
|
check_grads_padding(model, zero_model, loose=True)
|
|
|
|
print('overall cuda ', zero_model._memstats_collector._overall_cuda)
|
|
print('model cuda ', zero_model._memstats_collector._model_data_cuda)
|
|
|
|
|
|
@pytest.mark.dist
|
|
@pytest.mark.parametrize("world_size", [1, 2])
|
|
@pytest.mark.parametrize("enable_autocast", [True])
|
|
@pytest.mark.parametrize("use_zero_init_ctx", [True])
|
|
@pytest.mark.parametrize("shard_strategy", [TensorShardStrategy, BucketTensorShardStrategy])
|
|
def test_shard_model_v2(world_size, use_zero_init_ctx, enable_autocast, shard_strategy):
|
|
run_func = partial(run_dist,
|
|
world_size=world_size,
|
|
port=free_port(),
|
|
use_zero_init_ctx=use_zero_init_ctx,
|
|
enable_autocast=enable_autocast,
|
|
shard_strategy=shard_strategy)
|
|
mp.spawn(run_func, nprocs=world_size)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
test_shard_model_v2(world_size=2, use_zero_init_ctx=True, enable_autocast=True, shard_strategy=TensorShardStrategy)
|