ColossalAI/colossalai/utils/moe.py

54 lines
2.1 KiB
Python

from typing import Dict, List
import torch.distributed as dist
import torch.nn as nn
from colossalai.context.moe_context import MOE_CONTEXT
from colossalai.legacy.context import ParallelMode
from colossalai.legacy.core import global_context as gpc
from colossalai.legacy.utils import is_using_ddp
def get_moe_epsize_param_dict(model: nn.Module) -> Dict[int, List[nn.Parameter]]:
"""Returns a parameter dictionary, the key of which is the expert parallel
size of every parameter. Since the parameters in data parallelism is replicated
in each GPU, we set their ep_size to 1.
Args:
model (:class:`torch.nn.Module`): A pyTorch `nn.Module` from which we get dict.
"""
epsize_param_dict = dict()
for param in model.parameters():
if not hasattr(param, "moe_info"):
ep_size = 1 # set ep_size to 1 for dp parameters
else:
ep_size = param.moe_info.ep_size
if ep_size not in epsize_param_dict:
epsize_param_dict[ep_size] = []
epsize_param_dict[ep_size].append(param)
return epsize_param_dict
def sync_moe_model_param(model: nn.Module):
"""Make sure model parameters are consistent in MoE parallel context.
Args:
model (:class:`torch.nn.Module`): A pyTorch model on whose parameters you check the consistency.
"""
if is_using_ddp():
param_dict = get_moe_epsize_param_dict(model)
# synchronize the parameters whose dp_group is the whole world
if 1 in param_dict:
src_rank = gpc.get_ranks_in_group(ParallelMode.DATA)[0]
for param in param_dict[1]:
dist.broadcast(param, src=src_rank, group=gpc.get_group(ParallelMode.DATA))
for ep_size in param_dict:
# When ep_size = world_size, communication is not needed
if ep_size != 1 and ep_size != MOE_CONTEXT.world_size:
src_rank = dist.get_rank(MOE_CONTEXT.parallel_info_dict[ep_size].ep_group)
for param in param_dict[ep_size]:
dist.broadcast(param, src=src_rank, group=param.moe_info.dp_group)