mirror of https://github.com/hpcaitech/ColossalAI
178 lines
5.9 KiB
Python
178 lines
5.9 KiB
Python
# modified from torch-int: https://github.com/Guangxuan-Xiao/torch-int/blob/main/torch_int/nn/linear.py
|
|
|
|
import torch
|
|
from torch_int._CUDA import linear_a8_w8_b8_o8, linear_a8_w8_bfp32_ofp32
|
|
from torch_int.functional.quantization import quantize_per_tensor_absmax
|
|
|
|
try:
|
|
from colossalai.kernel.op_builder.smoothquant import SmoothquantBuilder
|
|
|
|
smoothquant_cuda = SmoothquantBuilder().load()
|
|
HAS_SMOOTHQUANT_CUDA = True
|
|
except ImportError:
|
|
HAS_SMOOTHQUANT_CUDA = False
|
|
raise ImportError("CUDA smoothquant linear is not installed")
|
|
|
|
|
|
class W8A8BFP32O32LinearSiLU(torch.nn.Module):
|
|
def __init__(self, in_features, out_features, alpha=1.0, beta=1.0):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
|
|
self.register_buffer(
|
|
"weight",
|
|
torch.randint(
|
|
-127,
|
|
127,
|
|
(self.out_features, self.in_features),
|
|
dtype=torch.int8,
|
|
requires_grad=False,
|
|
),
|
|
)
|
|
self.register_buffer(
|
|
"bias",
|
|
torch.zeros((1, self.out_features), dtype=torch.float, requires_grad=False),
|
|
)
|
|
self.register_buffer("a", torch.tensor(alpha))
|
|
|
|
def to(self, *args, **kwargs):
|
|
super().to(*args, **kwargs)
|
|
self.weight = self.weight.to(*args, **kwargs)
|
|
self.bias = self.bias.to(*args, **kwargs)
|
|
return self
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x):
|
|
x_shape = x.shape
|
|
x = x.view(-1, x_shape[-1])
|
|
y = smoothquant_cuda.linear_silu_a8_w8_bfp32_ofp32(x, self.weight, self.bias, self.a.item(), 1.0)
|
|
y = y.view(*x_shape[:-1], -1)
|
|
return y
|
|
|
|
@staticmethod
|
|
def from_float(module: torch.nn.Linear, input_scale):
|
|
int8_module = W8A8BFP32O32LinearSiLU(module.in_features, module.out_features)
|
|
int8_weight, weight_scale = quantize_per_tensor_absmax(module.weight)
|
|
alpha = input_scale * weight_scale
|
|
int8_module.weight = int8_weight
|
|
if module.bias is not None:
|
|
int8_module.bias.data.copy_(module.bias.to(torch.float))
|
|
int8_module.a = alpha
|
|
return int8_module
|
|
|
|
|
|
class W8A8B8O8Linear(torch.nn.Module):
|
|
# For qkv_proj
|
|
def __init__(self, in_features, out_features, alpha=1.0, beta=1.0):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
|
|
self.register_buffer(
|
|
"weight",
|
|
torch.randint(
|
|
-127,
|
|
127,
|
|
(self.out_features, self.in_features),
|
|
dtype=torch.int8,
|
|
requires_grad=False,
|
|
),
|
|
)
|
|
self.register_buffer(
|
|
"bias",
|
|
torch.zeros((1, self.out_features), dtype=torch.int8, requires_grad=False),
|
|
)
|
|
self.register_buffer("a", torch.tensor(alpha))
|
|
self.register_buffer("b", torch.tensor(beta))
|
|
|
|
def to(self, *args, **kwargs):
|
|
super().to(*args, **kwargs)
|
|
self.weight = self.weight.to(*args, **kwargs)
|
|
self.bias = self.bias.to(*args, **kwargs)
|
|
return self
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x):
|
|
x_shape = x.shape
|
|
x = x.view(-1, x_shape[-1])
|
|
y = linear_a8_w8_b8_o8(x, self.weight, self.bias, self.a.item(), self.b.item())
|
|
y = y.view(*x_shape[:-1], -1)
|
|
return y
|
|
|
|
@staticmethod
|
|
def from_float(module: torch.nn.Linear, input_scale, output_scale):
|
|
int8_module = W8A8B8O8Linear(module.in_features, module.out_features)
|
|
int8_weight, weight_scale = quantize_per_tensor_absmax(module.weight)
|
|
alpha = input_scale * weight_scale / output_scale
|
|
int8_module.weight = int8_weight
|
|
int8_module.a = alpha
|
|
|
|
if module.bias is not None:
|
|
int8_bias, bias_scale = quantize_per_tensor_absmax(module.bias)
|
|
int8_module.bias = int8_bias
|
|
beta = bias_scale / output_scale
|
|
int8_module.b = beta
|
|
|
|
return int8_module
|
|
|
|
|
|
class W8A8BFP32OFP32Linear(torch.nn.Module):
|
|
# For fc2 and out_proj
|
|
def __init__(self, in_features, out_features, alpha=1.0, beta=1.0):
|
|
super().__init__()
|
|
self.in_features = in_features
|
|
self.out_features = out_features
|
|
|
|
self.register_buffer(
|
|
"weight",
|
|
torch.randint(
|
|
-127,
|
|
127,
|
|
(self.out_features, self.in_features),
|
|
dtype=torch.int8,
|
|
requires_grad=False,
|
|
),
|
|
)
|
|
self.register_buffer(
|
|
"bias",
|
|
torch.zeros(self.out_features, dtype=torch.float32, requires_grad=False),
|
|
)
|
|
self.register_buffer("a", torch.tensor(alpha))
|
|
|
|
def _apply(self, fn):
|
|
# prevent the bias from being converted to half
|
|
super()._apply(fn)
|
|
self.bias = self.bias.to(torch.float32)
|
|
return self
|
|
|
|
def to(self, *args, **kwargs):
|
|
super().to(*args, **kwargs)
|
|
self.weight = self.weight.to(*args, **kwargs)
|
|
self.bias = self.bias.to(*args, **kwargs)
|
|
self.bias = self.bias.to(torch.float32)
|
|
return self
|
|
|
|
@torch.no_grad()
|
|
def forward(self, x):
|
|
x_shape = x.shape
|
|
x = x.view(-1, x_shape[-1])
|
|
y = linear_a8_w8_bfp32_ofp32(x, self.weight, self.bias, self.a.item(), 1)
|
|
y = y.view(*x_shape[:-1], -1)
|
|
return y
|
|
|
|
@staticmethod
|
|
def from_float(module: torch.nn.Linear, input_scale):
|
|
int8_module = W8A8BFP32OFP32Linear(module.in_features, module.out_features)
|
|
int8_weight, weight_scale = quantize_per_tensor_absmax(module.weight)
|
|
alpha = input_scale * weight_scale
|
|
int8_module.weight = int8_weight
|
|
int8_module.a = alpha
|
|
int8_module.input_scale = input_scale
|
|
int8_module.weight_scale = weight_scale
|
|
|
|
if module.bias is not None:
|
|
int8_module.bias = module.bias.to(torch.float32)
|
|
|
|
return int8_module
|