ColossalAI/tests/test_autochunk/test_autochunk_alphafold/benchmark_autochunk_alphafo...

141 lines
4.3 KiB
Python

import time
from typing import Any, Dict, List
import torch
import torch.fx
import colossalai
from colossalai.autochunk.autochunk_codegen import AUTOCHUNK_AVAILABLE
from colossalai.fx.graph_module import ColoGraphModule
from colossalai.fx.passes.meta_info_prop import MetaInfoProp
from colossalai.utils import free_port
if AUTOCHUNK_AVAILABLE:
from colossalai.autochunk.autochunk_codegen import AutoChunkCodeGen
from colossalai.fx.profiler import MetaTensor
from colossalai.fx.tracer.experimental import ColoTracer, symbolic_trace
def _benchmark_evoformer_stack_gm(
data_args: tuple,
max_memory: int,
get_model: Any,
get_data: Any,
) -> None:
# build model and input
model = get_model().cpu().eval()
meta_args, concrete_args = get_data(*data_args)
if concrete_args is None:
concrete_args = []
# trace the meta graph and setup codegen
meta_graph = symbolic_trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
interp = MetaInfoProp(meta_graph)
meta_tensors = [MetaTensor(i[1], fake_device="cpu") for i in meta_args] + [i[1] for i in concrete_args]
interp.propagate(*meta_tensors)
codegen = AutoChunkCodeGen(
meta_graph,
max_memory=max_memory,
)
# trace and recompile
# MetaInfoProp requires symbolic_trace but CodeGen requires ColoTracer
graph = ColoTracer().trace(
model,
meta_args={k: v.to(torch.device("meta")) for k, v in meta_args},
concrete_args={k: v for k, v in concrete_args},
)
graph.set_codegen(codegen)
gm = ColoGraphModule(model, graph, ckpt_codegen=False)
gm.recompile()
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda()
# bench
mem = _benchmark_memory(gm, inputs)
speed = _benchmark_speed(gm, inputs)
print("evoformer stack gm, mem: %.2fMB, time: %.4fs" % (mem, speed))
def _benchmark_evoformer_stack_origin(
data_args: tuple,
get_model: Any,
get_data: Any,
) -> None:
# build model and input
model = get_model()
meta_args, concrete_args = get_data(*data_args)
if concrete_args is None:
concrete_args = []
# init inputs
inputs = [i[1] for i in meta_args] + [i[1] for i in concrete_args]
inputs = [i.cuda() if isinstance(i, torch.Tensor) else i for i in inputs]
model.cuda()
# bench
mem = _benchmark_memory(model, inputs)
speed = _benchmark_speed(model, inputs)
print("evoformer stack origin, mem: %.2fMB, time: %.4fs" % (mem, speed))
return mem
def _benchmark_memory(model, inputs):
with torch.no_grad():
torch.cuda.reset_peak_memory_stats()
now_mem = torch.cuda.memory_allocated() / 1024**2
model(*inputs)
new_max_mem = torch.cuda.max_memory_allocated() / 1024**2
return new_max_mem - now_mem
def _benchmark_speed(model, inputs, loop=5):
with torch.no_grad():
for _ in range(loop // 2 + 1):
model(*inputs)
torch.cuda.synchronize()
time1 = time.time()
for _ in range(loop):
model(*inputs)
torch.cuda.synchronize()
time2 = time.time()
return (time2 - time1) / loop
def benchmark_evoformer_stack(data_args):
from test_autochunk_evoformer_stack import get_data, get_model
print("\nmsa len: %d, pair len: %d" % (data_args[0], data_args[1]))
max_mem = _benchmark_evoformer_stack_origin(data_args, get_model, get_data)
for ratio in [0.5, 0.4, 0.3, 0.2, 0.1]:
try:
_benchmark_evoformer_stack_gm(data_args, max_mem * ratio, get_model, get_data)
except RuntimeError as e:
if e.args[0] == 'Search failed. Try a larger memory threshold.':
break
except Exception as e:
raise e
_benchmark_evoformer_stack_gm(data_args, None, get_model, get_data)
if __name__ == "__main__":
# launch colossalai
colossalai.launch(
config={},
rank=0,
world_size=1,
host="localhost",
port=free_port(),
backend="nccl",
)
benchmark_evoformer_stack((256, 256))
benchmark_evoformer_stack((256, 512))
benchmark_evoformer_stack((256, 1024))
benchmark_evoformer_stack((256, 1280))