ColossalAI/tests/test_elixir/utils/gpt.py

80 lines
2.5 KiB
Python

from functools import partial
import torch
import torch.nn as nn
from transformers import GPT2Config, GPT2LMHeadModel
from tests.test_elixir.utils.registry import TEST_MODELS
MICRO_VS = 128
MICRO_BS = 4
MICRO_SL = 64
MACRO_VS = 50257
MACRO_BS = 2
MACRO_SL = 1024
def micro_data_fn():
input_ids = torch.randint(low=0, high=MICRO_VS, size=(MICRO_BS, MICRO_SL))
attn_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attn_mask)
def small_data_fn():
input_ids = torch.randint(low=0, high=MACRO_VS, size=(MACRO_BS, MACRO_SL))
attn_mask = torch.ones_like(input_ids)
return dict(input_ids=input_ids, attention_mask=attn_mask)
class GPTLMLoss(nn.Module):
def __init__(self):
super().__init__()
self.loss_fn = nn.CrossEntropyLoss()
def forward(self, logits, labels):
shift_logits = logits[..., :-1, :].contiguous()
shift_labels = labels[..., 1:].contiguous()
# Flatten the tokens
return self.loss_fn(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1))
class GPTLMModel(nn.Module):
def __init__(self, hidden_size=768, num_layers=12, num_attention_heads=12, max_seq_len=1024, vocab_size=50257):
super().__init__()
self.enable_gc = False
self.config = GPT2Config(
# pre-commit: do not rearrange
n_embd=hidden_size,
n_layer=num_layers,
n_head=num_attention_heads,
n_positions=max_seq_len,
n_ctx=max_seq_len,
vocab_size=vocab_size,
resid_pdrop=0.0,
embd_pdrop=0.0,
attn_pdrop=0.0)
self.module = GPT2LMHeadModel(config=self.config)
self.criterion = GPTLMLoss()
def gradient_checkpointing_enable(self):
self.module.gradient_checkpointing_enable()
self.enable_gc = True
def forward(self, input_ids, attention_mask):
# Only return lm_logits
output = self.module(input_ids=input_ids, attention_mask=attention_mask, use_cache=(not self.enable_gc))[0]
loss = self.criterion(output, input_ids)
return loss
gpt2_micro = partial(GPTLMModel, hidden_size=32, num_layers=2, num_attention_heads=4, max_seq_len=64, vocab_size=128)
gpt2_small = GPTLMModel
gpt2_base = partial(GPTLMModel, hidden_size=1024, num_layers=24, num_attention_heads=16)
TEST_MODELS.register('gpt2_micro', gpt2_micro, micro_data_fn)
TEST_MODELS.register('gpt2_small', gpt2_small, small_data_fn)
TEST_MODELS.register('gpt2_base', gpt2_base, small_data_fn)