ColossalAI/examples/language/gpt/tools/download/scrapers.py

122 lines
3.0 KiB
Python

# Code taken in large part from https://github.com/jcpeterson/openwebtext
import time
import unicodedata
import bs4
import newspaper
from filter import should_exclude
from htmlmin import minify
from lxml.html.clean import Cleaner
def find_and_filter_tag(tag, soup):
"""tag specific filter logic"""
candidates = soup.find_all(tag)
candidates = [unicodedata.normalize("NFKD", x.string) for x in candidates if x.string is not None]
if tag == "p":
candidates = [y.strip() for y in candidates if len(y.split(" ")) >= 4]
count = sum(len(y.split(" ")) for y in candidates)
else:
raise NotImplementedError
return (candidates, count)
def raw_scraper(url, memoize):
t1 = time.time()
if should_exclude(url):
# heuristic to make downloading faster
return None, {
"url": url,
"scraper": "raw",
}
try:
cleaner = Cleaner()
cleaner.javascript = True
cleaner.style = True
article = newspaper.Article(url, fetch_images=False, memoize_articles=memoize)
article.download()
html = minify(article.html)
html = cleaner.clean_html(html)
article.parse()
except:
return None, {
"url": url,
"scraper": "raw",
}
if article.text == "":
return None, {
"url": url,
"scraper": "raw",
}
metadata = {"url": url, "elapsed": time.time() - t1, "scraper": "raw"}
return html, metadata
def newspaper_scraper(url, memoize):
t1 = time.time()
if should_exclude(url):
# heuristic to make downloading faster
return None, {
"url": url,
"scraper": "newspaper",
}
try:
article = newspaper.Article(url, fetch_images=False, memoize_articles=memoize)
article.download()
article.parse()
text = article.text
count = len(text.split())
except:
return None, {
"url": url,
"scraper": "newspaper",
}
metadata = {
"url": url,
"word_count": count,
"elapsed": time.time() - t1,
"scraper": "newspaper",
}
return text, metadata
def bs4_scraper(url, memoize):
t1 = time.time()
if should_exclude(url):
# heuristic to make downloading faster
return None, {
"url": url,
"scraper": "bs4",
}
try:
article = newspaper.Article(url, fetch_images=False, memoize_articles=memoize)
article.download()
html = article.html
soup = bs4.BeautifulSoup(html, "lxml")
text, count = find_and_filter_tag("p", soup)
# DDB: keep text as a single string for consistency with
# newspaper_scraper
text = " ".join(text)
except:
return None, {
"url": url,
"scraper": "bs4",
}
metadata = {
"url": url,
"word_count": count,
"elapsed": time.time() - t1,
"scraper": "bs4",
}
return text, metadata